We demonstrate a novel,composite laser written 3D waveguide,fabricated in boro-aluminosilicate glass,with a refractive index contrast of 1.12×10−2.The waveguide is fabricated using a multi-pass approach which lev...We demonstrate a novel,composite laser written 3D waveguide,fabricated in boro-aluminosilicate glass,with a refractive index contrast of 1.12×10−2.The waveguide is fabricated using a multi-pass approach which leverages the respective refractive index modification mechanisms of both the thermal and athermal inscription regimes.We present the study and optimisation of inscription parameters for maximising positive refractive index change and ultimately demonstrate a dramatic advancement on the state of the art of bend losses in laser-written waveguides.The 1.0 dB cm−1 bend loss cut-off radius is reduced from 10 mm to 4 mm,at a propagation wavelength of 1550 nm.展开更多
In this paper, a refractive index profile design enabling us to obtain a flat modal field around the fibre centre is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) op...In this paper, a refractive index profile design enabling us to obtain a flat modal field around the fibre centre is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) optical fibres is presented. A comparison is made between the properties of a three-layer LFM structure and a standard step-index profile with the same core size. The obtained results indicate that the effective area of the LFM fibre is about twice as large as that of the standard step-index fibre, but the LFM fibre has less effective ability to filter out the higher order modes than the standard step-index fibre with the same bending radius.展开更多
Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a n...Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss.We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum,and that this can be calculated from the structural parameters of a fiber using a simple analytical formula.This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength.It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.展开更多
Based on the Nd-doped single-mode fiber as the gain medium,an all-fiber 12th harmonic mode-locked(HML)laser operating at the 0.9μm waveband was obtained for the first time,to the best of our knowledge.A mandrel with ...Based on the Nd-doped single-mode fiber as the gain medium,an all-fiber 12th harmonic mode-locked(HML)laser operating at the 0.9μm waveband was obtained for the first time,to the best of our knowledge.A mandrel with a diameter of 10 mm was employed to introduce bending losses to suppress mode competition at 1.06μm,which resulted in a suppression ratio of up to 54 dB.The 1st–12th order HML pulses with the tunable repetition rate of 494.62 kHz–5.94 MHz were obtained in the mode-locked laser with a center wavelength of∼904 nm.In addition,the laser has an extremely low threshold pump power of 88 mW.To the best of our knowledge,this is the first time that an HML pulse has been achieved in a 0.9μm Nd-doped single-mode all-fiber mode-locked laser with the advantages of low cost,simple structure,and compactness,which could be an ideal light source for two-photon microscopy.展开更多
The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is an...The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber p!gtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.展开更多
A kind of tapered segmented cladding fiber(T-SCF)with large mode area(LMA)is proposed,and the mode and amplification characteristics of T-SCFs with concave,linear,and convex tapered structures are investigated based o...A kind of tapered segmented cladding fiber(T-SCF)with large mode area(LMA)is proposed,and the mode and amplification characteristics of T-SCFs with concave,linear,and convex tapered structures are investigated based on finite-element method(FEM)and few-mode steady-state rate equation.Simulation results indicate that the concave tapered structure can introduce high loss for high-order modes(HOMs)that is advantageous to achieve single-mode operation,whereas the convex tapered structure provides large effective mode area that can help to mitigate nonlinear effects.Meanwhile,the small-to-large amplification scheme shows further advantages on stripping off HOMs,and the large-to-small amplification scheme decreases the heat load density induced by the high-power pump.Moreover,singlemode propagation performance,effective mode area,and heat load density of the T-SCF are superior to those of tapered step index fiber(T-SIF).These theoretical model and numerical results can provide instructive suggestions for designing high-power fiber lasers and amplifiers.展开更多
With the benefits of low latency,wide transmission bandwidth,and large mode field area,hollow-core antiresonant fiber(HC-ARF)has been a research hotspot in the past decade.In this paper,a hollow core step-index antire...With the benefits of low latency,wide transmission bandwidth,and large mode field area,hollow-core antiresonant fiber(HC-ARF)has been a research hotspot in the past decade.In this paper,a hollow core step-index antiresonant fiber(HC-SARF),with stepped refractive indices cladding,is proposed and numerically demonstrated with the benefits of loss reduction and bending improvement.Glass-based capil-laries with both high(n=1.45)and low(as low as n=1.36)refractive indices layers are introduced and formatted in the cladding air holes.Using the finite element method to perform numerical analysis of the designed fiber,results show that at the laser wavelengths of 980 and 1064 nm,the confinement loss is favorably reduced by about 6 dB/km compared with the conventional uniform cladding HC-ARF.The bending loss,around 15 cm bending radius of this fiber,is also reduced by 2 dB/km.The cladding air hole radius in this fiber is further investigated to optimize the confinement loss and the mode field diameter with single-mode transmission behavior.This proposed HC-SARF has great potential in optical fiber transmission and high energy delivery.展开更多
The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photolumi- nes...The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photolumi- nescence (PL) spectra. Due to oscillation of light in resonant cavity, the bending loss of laser exhibits multiple times amplification of that of PL. Furthermore, an abnormal phenomenon of dominant peak switching is found in curved NWs when increasing the pump power, which has been first discovered and reported.展开更多
基金funded by the Australian Research Council Discovery Program under grant FT200100590.
文摘We demonstrate a novel,composite laser written 3D waveguide,fabricated in boro-aluminosilicate glass,with a refractive index contrast of 1.12×10−2.The waveguide is fabricated using a multi-pass approach which leverages the respective refractive index modification mechanisms of both the thermal and athermal inscription regimes.We present the study and optimisation of inscription parameters for maximising positive refractive index change and ultimately demonstrate a dramatic advancement on the state of the art of bend losses in laser-written waveguides.The 1.0 dB cm−1 bend loss cut-off radius is reduced from 10 mm to 4 mm,at a propagation wavelength of 1550 nm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10576012 and 60538010).
文摘In this paper, a refractive index profile design enabling us to obtain a flat modal field around the fibre centre is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) optical fibres is presented. A comparison is made between the properties of a three-layer LFM structure and a standard step-index profile with the same core size. The obtained results indicate that the effective area of the LFM fibre is about twice as large as that of the standard step-index fibre, but the LFM fibre has less effective ability to filter out the higher order modes than the standard step-index fibre with the same bending radius.
文摘Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss.We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum,and that this can be calculated from the structural parameters of a fiber using a simple analytical formula.This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength.It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.
基金supported by the Natural Science Foundation of Shandong Province(Nos.ZR2019MF047,ZR2020MF126,and ZR2019MF043).
文摘Based on the Nd-doped single-mode fiber as the gain medium,an all-fiber 12th harmonic mode-locked(HML)laser operating at the 0.9μm waveband was obtained for the first time,to the best of our knowledge.A mandrel with a diameter of 10 mm was employed to introduce bending losses to suppress mode competition at 1.06μm,which resulted in a suppression ratio of up to 54 dB.The 1st–12th order HML pulses with the tunable repetition rate of 494.62 kHz–5.94 MHz were obtained in the mode-locked laser with a center wavelength of∼904 nm.In addition,the laser has an extremely low threshold pump power of 88 mW.To the best of our knowledge,this is the first time that an HML pulse has been achieved in a 0.9μm Nd-doped single-mode all-fiber mode-locked laser with the advantages of low cost,simple structure,and compactness,which could be an ideal light source for two-photon microscopy.
文摘The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber p!gtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.
基金the National Key R&D Program of China(No.2020YFB1805802)National Natural Science Foundation of China(Nos.62005012 and 61827817)+1 种基金State Key Laboratory of Rail Traffic Control and Safety(No.RCS2019ZZ007)Beijing Jiaotong University,and Shandong Province Higher Educational Science and Technology Program(No.J18KA368).
文摘A kind of tapered segmented cladding fiber(T-SCF)with large mode area(LMA)is proposed,and the mode and amplification characteristics of T-SCFs with concave,linear,and convex tapered structures are investigated based on finite-element method(FEM)and few-mode steady-state rate equation.Simulation results indicate that the concave tapered structure can introduce high loss for high-order modes(HOMs)that is advantageous to achieve single-mode operation,whereas the convex tapered structure provides large effective mode area that can help to mitigate nonlinear effects.Meanwhile,the small-to-large amplification scheme shows further advantages on stripping off HOMs,and the large-to-small amplification scheme decreases the heat load density induced by the high-power pump.Moreover,singlemode propagation performance,effective mode area,and heat load density of the T-SCF are superior to those of tapered step index fiber(T-SIF).These theoretical model and numerical results can provide instructive suggestions for designing high-power fiber lasers and amplifiers.
基金the National Natural Science Foundation of China(Grant No.62075074)the National Key R&D Program of China(Nos.2018YFF01011800 and 2018YFB2201901).
文摘With the benefits of low latency,wide transmission bandwidth,and large mode field area,hollow-core antiresonant fiber(HC-ARF)has been a research hotspot in the past decade.In this paper,a hollow core step-index antiresonant fiber(HC-SARF),with stepped refractive indices cladding,is proposed and numerically demonstrated with the benefits of loss reduction and bending improvement.Glass-based capil-laries with both high(n=1.45)and low(as low as n=1.36)refractive indices layers are introduced and formatted in the cladding air holes.Using the finite element method to perform numerical analysis of the designed fiber,results show that at the laser wavelengths of 980 and 1064 nm,the confinement loss is favorably reduced by about 6 dB/km compared with the conventional uniform cladding HC-ARF.The bending loss,around 15 cm bending radius of this fiber,is also reduced by 2 dB/km.The cladding air hole radius in this fiber is further investigated to optimize the confinement loss and the mode field diameter with single-mode transmission behavior.This proposed HC-SARF has great potential in optical fiber transmission and high energy delivery.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61177062), the Program for Zhejiang Leading Team of S&T Innovation, the Fundamental Research Funds for the Central Universities.
文摘The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photolumi- nescence (PL) spectra. Due to oscillation of light in resonant cavity, the bending loss of laser exhibits multiple times amplification of that of PL. Furthermore, an abnormal phenomenon of dominant peak switching is found in curved NWs when increasing the pump power, which has been first discovered and reported.