In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer ma...Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.展开更多
The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi...The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.展开更多
For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral f...For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.展开更多
A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotrop...A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotropic elastic-plastic material,whose elastic modulus,yield strength,and section height are functions of the axial coordinates of the beam respectively.Considering the effect of shear on the deformation of the beam,the elastic and elastic-plastic bending problems of the axially variable stiffness beam were studied.Then,the analytical solutions of the elastic and elastic-plastic deformation of the beam were derived when the cross-section height and the elastic modulus of the material were varied by special function along the length of the beam respectively.The elastic and elastic-plastic analysis of the variable stiffness beam was carried out using Differential Quadrature Method(DQM)when the bending stiffness varied arbitrarily.The influence of the axial variation of the bending stiffness on the elastic and elastic-plastic deformation of the beam was analyzed by numerical simulation,DQM,and finite element method(FEM).Simulation results verified the practicability of the proposed mechanical model,and the comparison between the results of the solutions of DQM and FEM showed that DQM is accurate and effective in elastic and elastic-plastic analysis of variable stiffness beams.展开更多
Using the Green function, the boundary integral formula and natural boundary integral equation for thermal elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- sy...Using the Green function, the boundary integral formula and natural boundary integral equation for thermal elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- symmetrical load, by utilizing the Fourier series and convolution formulae, the bending solutions under non-axisymmetrical thermal conditions have been obtained. The calculating process is simple. Examples show the discussed methods are effective.展开更多
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
Wepresnet a brief introduction of applying the idea of mortar method to locally nonconforming TRUNC element for solving plate bending problem. At the interfaces, three mortar conditions, one for the value of solution ...Wepresnet a brief introduction of applying the idea of mortar method to locally nonconforming TRUNC element for solving plate bending problem. At the interfaces, three mortar conditions, one for the value of solution in pointwise way, the other two for the normal and tangential derivatives of the solution in projection way, are provided to secure the global convergence. Afte some detailed analysis, we obtain that its error estimates in both energy norm and discrete H1 norm are optimal for u*∈H3(Ω)∩H2 0(Ω).展开更多
This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the ...This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the plate subjected to by a concentrated force equally at four corner points respectively. We select a flexural function which satisfies not only all the geometric boundary conditions on free edges wholly but also the boundary conditions of the total internal forces. We apply the variational method meanwhile and then obtain better approximate solutions.展开更多
Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are va...Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.展开更多
In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;...In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;">φ</span>u</em> + <em>f </em>(<em>t</em>, <em>u</em>, <em>u</em>”, <em><span style="white-space:nowrap;">φ</span></em>), 0 < <em>t</em> < 1, -<em><span style="white-space:nowrap;">φ</span></em>” = <em>μg</em> (<em>t</em>, <em>u</em>, <em>u</em>”), 0 < <em>t</em> < 1, <em>u</em> (0) = <em>u</em> (1) = <em>u</em>”(0) = <em>u</em>”(1) = 0, <em><span style="white-space:nowrap;">φ</span> </em>(0) = <em><span style="white-space:nowrap;">φ</span> </em>(1) = 0;where <em>μ</em> > 0 is a constant, and the nonlinear terms<em> f</em>, <em>g</em> may be singular with respect to both the time and space variables. The results obtained herein generalize and improve some known results including singular and non-singular cases.展开更多
A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equat...A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equations. By using such a method, we study the bending problem of a circular plate with arbitrary large deflection. As the deflection increases, the bending behavior usually exhibits a so-called plate-to-membrane transition. Capturing such a transition has ever frustrated researchers for decades. However, without introducing any addi- tional treatment, we show in this study that the proposed wavelet solutions can naturally cover the plate-membrane transition region as the plate deflection increases. In addition, the high accuracy and efficiency of the wavelet method in solving strongly nonlinear problems is numerically confirmed, and applicable scopes for the linear, the membrane and the yon Karman plate theories are identified with respect to the large deformation bending of circular plates.展开更多
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金Funded by the Natural Science Foundation of Anhui Province (No. 070414190)
文摘Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.
文摘The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.
基金Project supported by the National Basic Research Program of China (No. 2007CB209400)the National Nature Fond (No. 50774077 and 50774081)the National Fond of Author of Doctor Thesis (100760)
文摘For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175058).
文摘A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotropic elastic-plastic material,whose elastic modulus,yield strength,and section height are functions of the axial coordinates of the beam respectively.Considering the effect of shear on the deformation of the beam,the elastic and elastic-plastic bending problems of the axially variable stiffness beam were studied.Then,the analytical solutions of the elastic and elastic-plastic deformation of the beam were derived when the cross-section height and the elastic modulus of the material were varied by special function along the length of the beam respectively.The elastic and elastic-plastic analysis of the variable stiffness beam was carried out using Differential Quadrature Method(DQM)when the bending stiffness varied arbitrarily.The influence of the axial variation of the bending stiffness on the elastic and elastic-plastic deformation of the beam was analyzed by numerical simulation,DQM,and finite element method(FEM).Simulation results verified the practicability of the proposed mechanical model,and the comparison between the results of the solutions of DQM and FEM showed that DQM is accurate and effective in elastic and elastic-plastic analysis of variable stiffness beams.
文摘Using the Green function, the boundary integral formula and natural boundary integral equation for thermal elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- symmetrical load, by utilizing the Fourier series and convolution formulae, the bending solutions under non-axisymmetrical thermal conditions have been obtained. The calculating process is simple. Examples show the discussed methods are effective.
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
文摘Wepresnet a brief introduction of applying the idea of mortar method to locally nonconforming TRUNC element for solving plate bending problem. At the interfaces, three mortar conditions, one for the value of solution in pointwise way, the other two for the normal and tangential derivatives of the solution in projection way, are provided to secure the global convergence. Afte some detailed analysis, we obtain that its error estimates in both energy norm and discrete H1 norm are optimal for u*∈H3(Ω)∩H2 0(Ω).
文摘This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the plate subjected to by a concentrated force equally at four corner points respectively. We select a flexural function which satisfies not only all the geometric boundary conditions on free edges wholly but also the boundary conditions of the total internal forces. We apply the variational method meanwhile and then obtain better approximate solutions.
文摘Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.
文摘In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;">φ</span>u</em> + <em>f </em>(<em>t</em>, <em>u</em>, <em>u</em>”, <em><span style="white-space:nowrap;">φ</span></em>), 0 < <em>t</em> < 1, -<em><span style="white-space:nowrap;">φ</span></em>” = <em>μg</em> (<em>t</em>, <em>u</em>, <em>u</em>”), 0 < <em>t</em> < 1, <em>u</em> (0) = <em>u</em> (1) = <em>u</em>”(0) = <em>u</em>”(1) = 0, <em><span style="white-space:nowrap;">φ</span> </em>(0) = <em><span style="white-space:nowrap;">φ</span> </em>(1) = 0;where <em>μ</em> > 0 is a constant, and the nonlinear terms<em> f</em>, <em>g</em> may be singular with respect to both the time and space variables. The results obtained herein generalize and improve some known results including singular and non-singular cases.
基金Project supported by the National Natural Science Foundation of China(Nos.11472119,11032006 and 11121202)the National Key Project of Magneto-Constrained Fusion Energy Development Program(No.2013GB110002)the Scientific and Technological Self-innovation Foundation of Huazhong Agricultural University(No.52902-0900206074)
文摘A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equations. By using such a method, we study the bending problem of a circular plate with arbitrary large deflection. As the deflection increases, the bending behavior usually exhibits a so-called plate-to-membrane transition. Capturing such a transition has ever frustrated researchers for decades. However, without introducing any addi- tional treatment, we show in this study that the proposed wavelet solutions can naturally cover the plate-membrane transition region as the plate deflection increases. In addition, the high accuracy and efficiency of the wavelet method in solving strongly nonlinear problems is numerically confirmed, and applicable scopes for the linear, the membrane and the yon Karman plate theories are identified with respect to the large deformation bending of circular plates.