The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated...Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN.展开更多
Ruptures at the bottom of cartridges are a common cause of failure of ammunitions,which directly threatens the safety of weapons and shooters.Based on plastic tube theory,this study analyses the radial and axial defor...Ruptures at the bottom of cartridges are a common cause of failure of ammunitions,which directly threatens the safety of weapons and shooters.Based on plastic tube theory,this study analyses the radial and axial deformation of a cartridge,considering the radial constraint of the closed end at the bottom of the cartridge.Owing to the influence of the closed end,the bottom of a cartridge does not establish complete contact with the chamber.Owing to strain concentration in the non-contact area,this area is more amenable to the occurrence of cartridge rupture.This theory predicts the location of the fracture more accurately than the traditional theory.The maximum axial deformation of a cartridge comprises bending and friction deformation.The maximum strain at the bottom of the cartridge increased by 135%owing to the introduction of bending strain caused by the closed end.The strain distribution of a cartridge was measured using digital image correlation technology,and the measured result was consistent with the predicted results of the bending deformation theory and rupture case.The effects of wall thickness,radial clearance,friction coefficient,and axial clearance on the axial deformation of the cylinder were studied.Increasing the wall thickness and reducing radial clearance were found to reduce bending deformation;furthermore,lubrication and reduction in axial clearance reduce frictional deformation,which in turn reduce cartridge rupture.展开更多
In this paper,bending performance and rolling shear properties of crosslaminated timber(CLT)panels made from Canadian hemlock were investigated by varied approaches.Firstly,three groups of bending tests of three-layer...In this paper,bending performance and rolling shear properties of crosslaminated timber(CLT)panels made from Canadian hemlock were investigated by varied approaches.Firstly,three groups of bending tests of three-layer CLT panels with different spans were carried out.Different failure modes were obtained:bending failure,rolling shear failure,bonding line failure,local failure of the outer layer and mixed failure mode.Deflection and strain measurements were employed to calculate the global and local modulus of elastic(MOE),compared with the theoretical value.In addition,a modified compression shear testing method was introduced to evaluate the rolling shear strength and modulus,compared with the results from strain measurements in bending shear tests.According to testing results,bonding line failure and rolling shear failure were dominant failure modes in bending tests,and the theoretical value of bending property was beyond the average level of the calculating results obtained from both deflection and strain measurements.In addition,the rolling shear strength and modulus obtained from compression shear tests were relatively smaller than those from bending tests.展开更多
In early winter it is usual, in cold regions, that ice features approach offshore structures, like offshore platforms, impacting them, in a slow process of constant deformation build up. Interaction follows, in many c...In early winter it is usual, in cold regions, that ice features approach offshore structures, like offshore platforms, impacting them, in a slow process of constant deformation build up. Interaction follows, in many cases, up to the point where ice-failure caused by bending fracture takes place. This supposes very large contact forces that the structure has to resist. Therefore, quantification of these efforts is of vital importance to the structural design of platforms. In several designs, these platforms are constructed with inclined walls so as to cause ice to fail in a flex-compression mode. In such a case the ice feature is analyzed as a beam constituted of a linear elastic material in brittle state with constant ice thickness. The simplification renders the problem solvable in a close form. However, this hypothesis goes against field observations. Marine currents action, wind and the sequence of contacts among features lead to thickness variations. Here this factor is addressed in the construction of a model, for harmonic forms of variation of thickness profile, and the accompanying curvature variations, whose solution determines field variables used to address the failure question. Due to the deformation dependency of the loading, a numerical scheme for the two-point boundary value problem in the semi-infinite space is developed. Failure pressures are computed based on a Rankine locus of failure. Variations of the order of 20% in the failure loads, as compared to the uniform beam model, are observed.展开更多
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
基金Projects(U1332110,50704012)supported by the National Natural Science Foundation of ChinaProject(F10-205-1-59)supported by Science and Technology Foundation of Shenyang,China
文摘Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN.
基金The authors are grateful for the reviewers’instructive suggestions and careful proofreading.This work was supported by the Equipment Development Department of the Central Military Commission of China(grant nos.301090702)the Foundation of National Laboratory(grant nos.61426060102162606005 and JCKYS2019209C001).
文摘Ruptures at the bottom of cartridges are a common cause of failure of ammunitions,which directly threatens the safety of weapons and shooters.Based on plastic tube theory,this study analyses the radial and axial deformation of a cartridge,considering the radial constraint of the closed end at the bottom of the cartridge.Owing to the influence of the closed end,the bottom of a cartridge does not establish complete contact with the chamber.Owing to strain concentration in the non-contact area,this area is more amenable to the occurrence of cartridge rupture.This theory predicts the location of the fracture more accurately than the traditional theory.The maximum axial deformation of a cartridge comprises bending and friction deformation.The maximum strain at the bottom of the cartridge increased by 135%owing to the introduction of bending strain caused by the closed end.The strain distribution of a cartridge was measured using digital image correlation technology,and the measured result was consistent with the predicted results of the bending deformation theory and rupture case.The effects of wall thickness,radial clearance,friction coefficient,and axial clearance on the axial deformation of the cylinder were studied.Increasing the wall thickness and reducing radial clearance were found to reduce bending deformation;furthermore,lubrication and reduction in axial clearance reduce frictional deformation,which in turn reduce cartridge rupture.
文摘In this paper,bending performance and rolling shear properties of crosslaminated timber(CLT)panels made from Canadian hemlock were investigated by varied approaches.Firstly,three groups of bending tests of three-layer CLT panels with different spans were carried out.Different failure modes were obtained:bending failure,rolling shear failure,bonding line failure,local failure of the outer layer and mixed failure mode.Deflection and strain measurements were employed to calculate the global and local modulus of elastic(MOE),compared with the theoretical value.In addition,a modified compression shear testing method was introduced to evaluate the rolling shear strength and modulus,compared with the results from strain measurements in bending shear tests.According to testing results,bonding line failure and rolling shear failure were dominant failure modes in bending tests,and the theoretical value of bending property was beyond the average level of the calculating results obtained from both deflection and strain measurements.In addition,the rolling shear strength and modulus obtained from compression shear tests were relatively smaller than those from bending tests.
文摘In early winter it is usual, in cold regions, that ice features approach offshore structures, like offshore platforms, impacting them, in a slow process of constant deformation build up. Interaction follows, in many cases, up to the point where ice-failure caused by bending fracture takes place. This supposes very large contact forces that the structure has to resist. Therefore, quantification of these efforts is of vital importance to the structural design of platforms. In several designs, these platforms are constructed with inclined walls so as to cause ice to fail in a flex-compression mode. In such a case the ice feature is analyzed as a beam constituted of a linear elastic material in brittle state with constant ice thickness. The simplification renders the problem solvable in a close form. However, this hypothesis goes against field observations. Marine currents action, wind and the sequence of contacts among features lead to thickness variations. Here this factor is addressed in the construction of a model, for harmonic forms of variation of thickness profile, and the accompanying curvature variations, whose solution determines field variables used to address the failure question. Due to the deformation dependency of the loading, a numerical scheme for the two-point boundary value problem in the semi-infinite space is developed. Failure pressures are computed based on a Rankine locus of failure. Variations of the order of 20% in the failure loads, as compared to the uniform beam model, are observed.