期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Bending stress of rolling element in elastic composite cylindrical roller bearing 被引量:11
1
作者 姚齐水 杨文 +1 位作者 于德介 余江鸿 《Journal of Central South University》 SCIE EI CAS 2013年第12期3437-3444,共8页
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t... A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%. 展开更多
关键词 elastic composite cylindrical roller bearing hollowness (degree of filling) finite element analysis bending stress rolling element
下载PDF
Bending Stresses of Steel Web Tapered Tee Section Cantilevers
2
作者 Boksun Kim Andrew Oliver Joshua Vyse 《Journal of Civil Engineering and Architecture》 2013年第11期1329-1342,共14页
Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and... Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%. 展开更多
关键词 Web tapered tee sections tapered cantilevers bending stress pattems maximum stress shift finite element analysis
下载PDF
EXPERIMENTAL STUDY ON CRACK CURVING PROPAGATION IN BENDING BEAMS UNDER IMPULSIVE LOAD 被引量:1
3
作者 方竞 姚雪峰 熊春阳 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第1期83-92,共10页
Dynamic fracture behaviour of crack curving in bent beams has been investigated. In order to understand the propagation mechanism of such cracks under impact, an experimental method is used that combines dynamic photo... Dynamic fracture behaviour of crack curving in bent beams has been investigated. In order to understand the propagation mechanism of such cracks under impact, an experimental method is used that combines dynamic photoelasticity with dynamic caustics to study the interaction of the flexural waves and the crack. From the state change of the transient stresses in polymer specimen, the curving fracture in the impulsively loaded beams is analyzed. The dynamic responses of crack tips are evaluated by the stress intensity factors for the cracks running in varying curvature paths under bending stress wave. 展开更多
关键词 crack curving propagation bending stress wave dynamic photoelasticity dynamic caustics
下载PDF
Precise Design and Stress Analysis of Straight Conical Gear
4
作者 CHEN Xia XIA Jun-chen HU Guo-an 《Computer Aided Drafting,Design and Manufacturing》 2006年第1期31-37,共7页
Variable section sweeping with sphere involutes is used to generate the precise model of tooth profile. The contact and bending stress of a straight conical gear set with static bearing contact during a meshing cycle ... Variable section sweeping with sphere involutes is used to generate the precise model of tooth profile. The contact and bending stress of a straight conical gear set with static bearing contact during a meshing cycle is studied using finite element method. Numerical results and comments are presented, revealing that the edge contact causes stress concentration and the gear tooth profile needs further modification. 展开更多
关键词 straight conical gear precise design bending stress Hertzian contact stress finite element stress analysis
下载PDF
Experimental study and stress analysis of rock bolt anchorage performance 被引量:15
5
作者 Yu Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期428-437,共10页
A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 4... A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°,60°, and 90°), two joint gaps (0 mm and 30 mm), and three kinds of host rock materials (weak concrete,strong concrete, and concrete-granite) were considered, and stressestrain measurements were conducted.Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constantwith any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the0 displacing angle (pure pull) to approximately 70 mm at a displacing angle greater than 40. Thedisplacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from thebolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebarbolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. Theyielding length (at 0) of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of thebolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greaterbending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar boltare greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimateload of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher thanthat in the weak rock. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Rock bolt D-Bolt Pull-and-shear stress bending Joint gap Rock strength
下载PDF
Microstructural and Microhardness Variation of Amorphous Fe_(78)Si_9B_(13) Alloy during Bend Stress Relaxation
6
作者 Xifeng LI Kaifeng ZHANG +2 位作者 Changli WANG Wenbo HAN Guofeng WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期253-256,共4页
The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxati... The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxation was examined. The variation of the microstructure and microhardness during bend stress relaxation process was studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and Vickers microhardness test,respectively. Curvature radius of the amorphous Fe78Si9B13 ribbons decreased with increase bend stress relaxation temperature and time. The microhardness of the stress relaxed specimens increased with time at 300℃ due to the forming of nanocrystals during bend stress relaxation. The pre-annealing reduced the decrease rate of the curvature radius of stress relaxed specimens. 展开更多
关键词 Bend stress relaxation Amorphous Fe78Si9B13 alloy Microstructure MICROHARDNESS
下载PDF
MEASUREMENT OF INTERNAL STRESSES OF METAL MULTILAYER COMPOSITE COATINGS
7
作者 顾卓明 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1997年第Z1期33-36,共4页
The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilay... The principle, formula and determination of internal stresses of metal multilayer composite coatings by means of the bending strip method were studied. Using this method, internal stresses of ion-plated metal multilayer composite coatings and thick monolayer coating of aluminium bronze, stainless steel and nickel-iron alloy were determined. The reason of decrement in internal stresses of multilayer composite coatings was discussed. 展开更多
关键词 metal multilayer composite coating measurement of internal stresses bending strip method
下载PDF
Vortex-Induced Vibrations of A Free-Spanning Pipe Based on A Nonlinear Hysteretic Soil Model at the Shoulders 被引量:1
8
作者 GAO Xi-feng XIE Wu-de XU Wan-hai 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期328-340,共13页
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculat... The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger. 展开更多
关键词 free-spanning pipe vortex-induced vibrations nonlinear hysteretic soil model bending stresses
下载PDF
Bending properties of green forage maize in field
9
作者 Jun Fu Zhao Xue +2 位作者 Qianku Fu Zhi Chen Luquan Ren 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第4期51-57,共7页
Stalk lodging is prone to occur during the harvesting of green forage maize due to the header and root anchorage,resulting in loss of harvest.In particular,the fallen stalk wraps around the header,causing a blockage a... Stalk lodging is prone to occur during the harvesting of green forage maize due to the header and root anchorage,resulting in loss of harvest.In particular,the fallen stalk wraps around the header,causing a blockage and increasing the energy cost.To address this problem,the deflection model was analyzed and established and a novel method to explore the field bend characteristics of green forage maize was proposed.The effects of stalk diameter,bending angle,and cutting height on bending stress and Young’s modulus were explored by using the method of in-situ measurement.Additionally,the bending deflection,axial displacement and measuring point displacement were obtained.Experimental results indicate that the stalk diameter and bending angle have a significant influence on bending stress.The bending stress has a positive correlation with bending angle and cutting height,while there is a negative correlation with stalk diameter.On the other hand,the bending angle,stalk diameter,and cutting height are closely related to the Young’s modulus.The mean values of the Young’s modulus decrease as a quadratic function with the increasing diameter and bending angle,while the cutting height has the opposite effect on it.Besides,the average values of bending deflection,axial displacement,and measuring point displacement exhibit an increasing trend when the bending angle and cutting height increase.This study results can provide a reference for studying the failure mechanism of green forage maize stalk harvesting,and the design of green forage maize harvesting machinery. 展开更多
关键词 green forage maize field measurement bending stress Young’s modulus deflection model HARVEST
原文传递
Stress and Springback Analyses of API X70 Pipeline Steel Under 3-Roller Bending via Finite Element Method 被引量:1
10
作者 Wenbo Zhao T.Warren Liao Lampros Kompotiatis 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期470-482,共13页
3-Roller bending is a widely applied manufacturing process, particularly in structural steel pipe industry.However, due to the difficulty and high cost of measuring stress distribution inside sheet material via tradit... 3-Roller bending is a widely applied manufacturing process, particularly in structural steel pipe industry.However, due to the difficulty and high cost of measuring stress distribution inside sheet material via traditional method,internal stress/strain response during forming is largely unexplored. The focuses of this study are two:(1) to map the radii of curvature as well as the stress inside the work piece during forming by utilizing the meshing mechanism of finite element method, and(2) to further provide some numeric guidelines for the configuration of the rolling system in order to improve production efficiency and product quality. The results of this study indicate that:(1) it is crucial to properly choose forming parameter in order to produce product with desired radii;(2) much like a gradual springback process, the radii of curvature gradually increase from the top roller to the exit-side bottom roller;(3) under the assumptions made in this study, to produce pipes with a specified diameter with varying configurations of the 3-roller system will not significantly change the final residual stress; and(4) finally, shifting of the neutral axis up to 2.0% of the thickness toward the compressing side during the forming process is observed. 展开更多
关键词 Asymmetrical 3-roller bending Residual stress Springback Pipe manufacturing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部