We investigated whether the vertical roller mill can be efficiently used in the beneficiation of low-grade magnesite and whether it can improve upon the separation indices achieved by the ball mill.We conducted experi...We investigated whether the vertical roller mill can be efficiently used in the beneficiation of low-grade magnesite and whether it can improve upon the separation indices achieved by the ball mill.We conducted experiments involving the reverse flotation and positive flotation of low-grade magnesite to determine the optimum process parameters,and then performed closed-circuit beneficiation experiments using the vertical roller mill and ball mill.The results show that the optimum process parameters for the vertical roller mill are as follows:a grinding fineness of 81.6wt%of particles less than 0.074 mm,a dodecyl amine(DDA)dosage in magnesite reverse flotation of 100 g·t?1,and dosages of Na2CO3,(NaPO3)6,and NaOL in the positive flotation section of 1000,100,and 1000 g·t?1,respectively.Compared with the ball mill,the use of the vertical roller mill in the beneficiation of low-grade magnesite resulted in a 1.28%increase in the concentrate grade of MgO and a 5.88%increase in the recovery of MgO.The results of our causation mechanism analysis show that a higher specific surface area and greater surface roughness are the main reasons for the better flotation performance of particles ground by the vertical roller mill in the beneficiation of lowgrade magnesite.展开更多
Rare earth elements(REEs)are irreplaceable materials supporting low-carbon technology and equip-ment,and their commercial demand and strategic position are becoming increasingly prominent.With the continuous depletion...Rare earth elements(REEs)are irreplaceable materials supporting low-carbon technology and equip-ment,and their commercial demand and strategic position are becoming increasingly prominent.With the continuous depletion of rare earth(RE)resources,developing high-efficiency beneficiation and eco-friendly metallurgical processes has attracted widespread attention.This paper reviews the major minerals exploited for RE production and their deposits,as well as the beneficiation and metallurgical processes of RE minerals.Bastnaesite,monazite,mixed RE ores,and ion-adsorption clays are the main raw materials in the world to date.RE-bearing ores(except ion-adsorption minerals)are generally beneficiated by flotation,gravity and magnetic separation techniques.The mainstream metallurgical processes for bastnaesite,monazite and mixed RE concentrates are oxidation roasting-HCl leaching,caustic soda decomposition and high-temperature concentrated sulfuric acid roasting,respectively.Ion-adsorption clays are directly processed by in situ leaching-precipitation/solvent extraction.To achieve the sustainable development of RE resources,it is essential to further explore innovative techniques to achievecomprehensive utilization and cleaner production.展开更多
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str...Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extr...Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃).展开更多
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This pa...The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.展开更多
After nearly one hundred years of research, metallurgy(metallurgical science and engineering) has gradually become a system with three levels of knowledge:(1) micro metallurgy at the atomic/molecular scale,(2) process...After nearly one hundred years of research, metallurgy(metallurgical science and engineering) has gradually become a system with three levels of knowledge:(1) micro metallurgy at the atomic/molecular scale,(2) process metallurgy at the procedure/device, and(3) macrodynamic metallurgy at the full process/process group. Macro-dynamic metallurgy development must eliminate the concept of an "isolated system" and establish concepts of "flow," "process network," and "operating program" to study the "structure–function–efficiency" in the macrodynamic operation of metallurgical manufacturing processes. It means considering "flow" as the ontology and observing dynamic change by"flow" to solve the green and intelligent potential of metallurgical enterprises. Metallurgical process engineering is integrated metallurgy, toplevel designed metallurgy, macro-dynamic operated metallurgy, and engineering science level metallurgy. Metallurgical process engineering is a cross-level, comprehensive, and integrated study of the macro-dynamic operation of manufacturing processes. Metallurgical process engineering studies the physical nature and constitutive characteristics of the dynamic operation of steel manufacturing process, as well as the analysis-optimization of the set of procedure functions, coordination-optimization of the set of procedures' relations, and reconstruction-optimization of the set of procedures in the manufacturing process. The study establishes rules for the macro operation of the manufacturing process, as well as dynamic and precise objectives of engineering design and production operation.展开更多
Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis o...Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.展开更多
TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown t...TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.展开更多
Hard coal is an important source of energy worldwide.Owing to the imperfections of excavation technology,most run-of-mine coals must be processed before they can be utilised as fuel.In this study,tests on the dry sepa...Hard coal is an important source of energy worldwide.Owing to the imperfections of excavation technology,most run-of-mine coals must be processed before they can be utilised as fuel.In this study,tests on the dry separation process were performed with numerous different raw hard coal and coal waste material samples,using a newly designed and constructed negative-pressure pneumatic separator(NPPS).The experiments revealed the effects of the feed-material properties and material processing conditions.These experiments were preceded by additional tests for evaluating the influence of each device operating parameter on the process,to determine the optimal method of supplying the feed material.The calorific value of the processed materials was improved by 5%–40%,while a minimal output yield of products(60%–70%)was maintained.The trials indicated that in coal material processing,the developed NPPS can be used for not only raw coal enrichment but also coal recovery from materials stored at coal-waste dumps.The main advantages of the device are its mobility,low material processing cost,and lack of water consumption during operation.展开更多
The potential of powder metallurgy processing for the manufacture of Al?SrB6 composites was explored. Al4Sr particles fractured extensively during the ball milling of Al?15Sr/Al?4B powder mixtures. There was no intera...The potential of powder metallurgy processing for the manufacture of Al?SrB6 composites was explored. Al4Sr particles fractured extensively during the ball milling of Al?15Sr/Al?4B powder mixtures. There was no interaction between the Al4Sr and AlB2 compounds across the section of the aluminium grains in the as-milled state. SrB6 formed, when the ball milled powder blends were subsequently annealed at sufficiently high temperatures. Ball milling for 1 h was sufficient for SrB6 to become the major constituent in powder blends annealed at 700 °C while it took 2 h of ball milling for powder blends annealed at 600 °C. Higher annealing temperatures and longer ball milling time encouraged the formation of the SrB6 compound while the latter made a great impact on the microstructural features of the Al?SrB6 composite. The SrB6 compound particles were much smaller and more uniformly distributed across the aluminium matrix grains in powder grains ball milled for 2 h before the annealing treatments at 600 °C and 700 °C.展开更多
The flow stress features of PM Ti-47Al-2Cr-0.2Mo alloy were studied by isothermal compression in the temperature range from 1000 to 1150 °C with strain rates of 0.001-1 s-1 on Gleeble-1500 thermo-simulation machi...The flow stress features of PM Ti-47Al-2Cr-0.2Mo alloy were studied by isothermal compression in the temperature range from 1000 to 1150 °C with strain rates of 0.001-1 s-1 on Gleeble-1500 thermo-simulation machine.The results show that the deformation temperature and strain rate have obvious effects on the flow characteristic,and the flow stress increases with increasing strain rate and decreasing temperature.The processing maps under different deformation conditions were established.The processing maps of this alloy are sensitive to strains.The processing map at the strain of 0.5 exhibits two suitable deformation domains of 1000-1050 °C at 0.001-0.05 s-1 and 1050-1125 °C at 0.01-0.1 s-1.The optimum parameters for hot working of the alloy are deformation temperature of 1000 °C and strain rate of 0.001 s-1 according to the processing map and microstructure at true strain of 0.5.展开更多
基金the National Natural Science Foundation of China(Nos.51874072 and 51804200)the State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2017-02).
文摘We investigated whether the vertical roller mill can be efficiently used in the beneficiation of low-grade magnesite and whether it can improve upon the separation indices achieved by the ball mill.We conducted experiments involving the reverse flotation and positive flotation of low-grade magnesite to determine the optimum process parameters,and then performed closed-circuit beneficiation experiments using the vertical roller mill and ball mill.The results show that the optimum process parameters for the vertical roller mill are as follows:a grinding fineness of 81.6wt%of particles less than 0.074 mm,a dodecyl amine(DDA)dosage in magnesite reverse flotation of 100 g·t?1,and dosages of Na2CO3,(NaPO3)6,and NaOL in the positive flotation section of 1000,100,and 1000 g·t?1,respectively.Compared with the ball mill,the use of the vertical roller mill in the beneficiation of low-grade magnesite resulted in a 1.28%increase in the concentrate grade of MgO and a 5.88%increase in the recovery of MgO.The results of our causation mechanism analysis show that a higher specific surface area and greater surface roughness are the main reasons for the better flotation performance of particles ground by the vertical roller mill in the beneficiation of lowgrade magnesite.
基金Project supported by the National Key R&D Program of China(2022YFC2905800,2021YFC2901000)the National Natural Science Foundation of China(52174242,52130406).
文摘Rare earth elements(REEs)are irreplaceable materials supporting low-carbon technology and equip-ment,and their commercial demand and strategic position are becoming increasingly prominent.With the continuous depletion of rare earth(RE)resources,developing high-efficiency beneficiation and eco-friendly metallurgical processes has attracted widespread attention.This paper reviews the major minerals exploited for RE production and their deposits,as well as the beneficiation and metallurgical processes of RE minerals.Bastnaesite,monazite,mixed RE ores,and ion-adsorption clays are the main raw materials in the world to date.RE-bearing ores(except ion-adsorption minerals)are generally beneficiated by flotation,gravity and magnetic separation techniques.The mainstream metallurgical processes for bastnaesite,monazite and mixed RE concentrates are oxidation roasting-HCl leaching,caustic soda decomposition and high-temperature concentrated sulfuric acid roasting,respectively.Ion-adsorption clays are directly processed by in situ leaching-precipitation/solvent extraction.To achieve the sustainable development of RE resources,it is essential to further explore innovative techniques to achievecomprehensive utilization and cleaner production.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(51421001)supported by the National Natural Science Foundation of ChinaProject(106112015CDJXY130002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project (50971012) supported by the National Natural Science Foundation of China
文摘Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃).
基金supported by the National Natural Science Foundation of China(61603418,61673400,61273185)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61621062)the Innovation-driven Plan in Central South University(2015cx007)
文摘The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.
文摘After nearly one hundred years of research, metallurgy(metallurgical science and engineering) has gradually become a system with three levels of knowledge:(1) micro metallurgy at the atomic/molecular scale,(2) process metallurgy at the procedure/device, and(3) macrodynamic metallurgy at the full process/process group. Macro-dynamic metallurgy development must eliminate the concept of an "isolated system" and establish concepts of "flow," "process network," and "operating program" to study the "structure–function–efficiency" in the macrodynamic operation of metallurgical manufacturing processes. It means considering "flow" as the ontology and observing dynamic change by"flow" to solve the green and intelligent potential of metallurgical enterprises. Metallurgical process engineering is integrated metallurgy, toplevel designed metallurgy, macro-dynamic operated metallurgy, and engineering science level metallurgy. Metallurgical process engineering is a cross-level, comprehensive, and integrated study of the macro-dynamic operation of manufacturing processes. Metallurgical process engineering studies the physical nature and constitutive characteristics of the dynamic operation of steel manufacturing process, as well as the analysis-optimization of the set of procedure functions, coordination-optimization of the set of procedures' relations, and reconstruction-optimization of the set of procedures in the manufacturing process. The study establishes rules for the macro operation of the manufacturing process, as well as dynamic and precise objectives of engineering design and production operation.
基金Project(2019M653082)supported by the China Postdoctoral Science FoundationProject(BGRIMM-KJSKL-2020-02)supported by the Found of State Key Laboratory of Mineral Processing,China。
文摘Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.
基金the National Natural Science Foundation of China (Project 59895150) and the National Advanced Materials Committee (Project 7
文摘TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.
基金The research presented in this paper was performed as a part of the Project AMSEP“Novel dry sorter for coal processing and coal recovery from mine originating wastes”,which was conducted with a financial grant from the European Institute of Innovation and Technology in frame of InnoEnergy S.E.,with Central Mining Institute as the Project coordinator.It was also financially supported by Statutory Research No.11325018-173.
文摘Hard coal is an important source of energy worldwide.Owing to the imperfections of excavation technology,most run-of-mine coals must be processed before they can be utilised as fuel.In this study,tests on the dry separation process were performed with numerous different raw hard coal and coal waste material samples,using a newly designed and constructed negative-pressure pneumatic separator(NPPS).The experiments revealed the effects of the feed-material properties and material processing conditions.These experiments were preceded by additional tests for evaluating the influence of each device operating parameter on the process,to determine the optimal method of supplying the feed material.The calorific value of the processed materials was improved by 5%–40%,while a minimal output yield of products(60%–70%)was maintained.The trials indicated that in coal material processing,the developed NPPS can be used for not only raw coal enrichment but also coal recovery from materials stored at coal-waste dumps.The main advantages of the device are its mobility,low material processing cost,and lack of water consumption during operation.
文摘The potential of powder metallurgy processing for the manufacture of Al?SrB6 composites was explored. Al4Sr particles fractured extensively during the ball milling of Al?15Sr/Al?4B powder mixtures. There was no interaction between the Al4Sr and AlB2 compounds across the section of the aluminium grains in the as-milled state. SrB6 formed, when the ball milled powder blends were subsequently annealed at sufficiently high temperatures. Ball milling for 1 h was sufficient for SrB6 to become the major constituent in powder blends annealed at 700 °C while it took 2 h of ball milling for powder blends annealed at 600 °C. Higher annealing temperatures and longer ball milling time encouraged the formation of the SrB6 compound while the latter made a great impact on the microstructural features of the Al?SrB6 composite. The SrB6 compound particles were much smaller and more uniformly distributed across the aluminium matrix grains in powder grains ball milled for 2 h before the annealing treatments at 600 °C and 700 °C.
基金supported by the National Key Research and Development Program of China(No.2021YFC29003205)the National Natural Science Foundation of China(Nos.21878045,51504058)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.N2225019)Natural Science Foundation of Liaoning Province,China(No.2022-MS-106)。
基金Project (51174233) supported by the National Natural Science Foundation of ChinaProject (2011CB605500) supported by National Basic Research program of China
文摘The flow stress features of PM Ti-47Al-2Cr-0.2Mo alloy were studied by isothermal compression in the temperature range from 1000 to 1150 °C with strain rates of 0.001-1 s-1 on Gleeble-1500 thermo-simulation machine.The results show that the deformation temperature and strain rate have obvious effects on the flow characteristic,and the flow stress increases with increasing strain rate and decreasing temperature.The processing maps under different deformation conditions were established.The processing maps of this alloy are sensitive to strains.The processing map at the strain of 0.5 exhibits two suitable deformation domains of 1000-1050 °C at 0.001-0.05 s-1 and 1050-1125 °C at 0.01-0.1 s-1.The optimum parameters for hot working of the alloy are deformation temperature of 1000 °C and strain rate of 0.001 s-1 according to the processing map and microstructure at true strain of 0.5.