A new type of benzene adsorption material was prepared by using the airtight heat treatment method.This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption c...A new type of benzene adsorption material was prepared by using the airtight heat treatment method.This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption capability.The microstructure and carbon content of materials were characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),BET(Brunauer Emmett Teller) surface area analysis and elemental analysis.The influences of heat treatment temperature on the properties of the composite materials were discussed.The benzene adsorption capability of the material was investigated.The experimental results show that the optimal heat treatment process condition is airtight heating at 400 ℃ for 2 h.The resulting sample has carbon mass fraction of 3.57%,specific surface area of 234.70 m 2 /g,pore volume of 0.41 m 3 /g,and average pore size of 6.59 nm.The samples show excellent benzene adsorption capability with an adsorption rate of 21.80%.展开更多
In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for prepar...In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.展开更多
The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine(DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in ...The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine(DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in the formation of hierarchical porous structures. The thickness of the coating shell can be controlled by changing the adding amount of TEOS. The core-shell composites with the thickness of 35 nm possess high surface areas(about 528 m2·g-1), large pores(about 3.5 nm in diameter) on the silica shells. The composite molecular sieves display higher adsorption capacity for benzene(140.2 mg·g-1) and butyraldehyde(213.7 mg·g-1) than that of pristine ZSM-5 for benzene(99.2 mg·g-1) and butyraldehyde(134.7 mg·g-1). The composite molecular sieves show a wide application foreground for harmful gas adsorbent for environmental protection.展开更多
Mesoporous Co3 O4(meso-Co3 O4)-supported Pt(0.53 wt.%Pt/meso-Co304)was synthesized via the KIT-6-templating and polyvinyl alcohol(PVA)-assisted reduction routes.Mesoporous CoO(meso-CoO)was fabricated through in situ r...Mesoporous Co3 O4(meso-Co3 O4)-supported Pt(0.53 wt.%Pt/meso-Co304)was synthesized via the KIT-6-templating and polyvinyl alcohol(PVA)-assisted reduction routes.Mesoporous CoO(meso-CoO)was fabricated through in situ reduction of meso-Co304 with glycerol,and the 0.18-0.69 wt.%Pt/meso-CoO samples were generated by the PVA-assisted reduction method.Meso-Co3 O4 and meso-CoO were of cubic crystal structure and the Pt nanoparticles(NPs)with a uniform size of ca.2 nm were well distributed on the mesoCo3 O4 or meso-CoO surface.The 0.56 wt%Pt/meso-CoO(0.56 Pt/meso-CoO)sample performed the best in benzene combustion(T50%=156℃and T90%=186℃at a space velocity of 80,000 mL/(g h)).Introducing water vapor or C02 with a certain concentration led to partial deactivation of 0.56 Pt/meso-CoO and such a deactivation was reversible.We think that the superior catalytic activity of 0.56 Pt/meso-CoO was intimately related to its good oxygen activation and benzene adsorption ability.展开更多
基金the Special Fund for 2010 Petty Invention and Petty Creation of Fujian Provincial Development and Reform Commission(No.MFGT[2010]1093)the Natural Science Foundation of Fujian Province (No.2011J01291)
文摘A new type of benzene adsorption material was prepared by using the airtight heat treatment method.This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption capability.The microstructure and carbon content of materials were characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),BET(Brunauer Emmett Teller) surface area analysis and elemental analysis.The influences of heat treatment temperature on the properties of the composite materials were discussed.The benzene adsorption capability of the material was investigated.The experimental results show that the optimal heat treatment process condition is airtight heating at 400 ℃ for 2 h.The resulting sample has carbon mass fraction of 3.57%,specific surface area of 234.70 m 2 /g,pore volume of 0.41 m 3 /g,and average pore size of 6.59 nm.The samples show excellent benzene adsorption capability with an adsorption rate of 21.80%.
文摘In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.
基金Funded by the China National Tobacco Corporation(110201101027(JH-02))
文摘The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine(DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in the formation of hierarchical porous structures. The thickness of the coating shell can be controlled by changing the adding amount of TEOS. The core-shell composites with the thickness of 35 nm possess high surface areas(about 528 m2·g-1), large pores(about 3.5 nm in diameter) on the silica shells. The composite molecular sieves display higher adsorption capacity for benzene(140.2 mg·g-1) and butyraldehyde(213.7 mg·g-1) than that of pristine ZSM-5 for benzene(99.2 mg·g-1) and butyraldehyde(134.7 mg·g-1). The composite molecular sieves show a wide application foreground for harmful gas adsorbent for environmental protection.
基金supported by the National Natural Science Foundation of China(Nos.21677004,21876006,21607005,21622701,21477005,and U1507108)National Natural Science Foundation of China-Liaoning Provincial People’s Government Joint Fund(U1908204)Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)
文摘Mesoporous Co3 O4(meso-Co3 O4)-supported Pt(0.53 wt.%Pt/meso-Co304)was synthesized via the KIT-6-templating and polyvinyl alcohol(PVA)-assisted reduction routes.Mesoporous CoO(meso-CoO)was fabricated through in situ reduction of meso-Co304 with glycerol,and the 0.18-0.69 wt.%Pt/meso-CoO samples were generated by the PVA-assisted reduction method.Meso-Co3 O4 and meso-CoO were of cubic crystal structure and the Pt nanoparticles(NPs)with a uniform size of ca.2 nm were well distributed on the mesoCo3 O4 or meso-CoO surface.The 0.56 wt%Pt/meso-CoO(0.56 Pt/meso-CoO)sample performed the best in benzene combustion(T50%=156℃and T90%=186℃at a space velocity of 80,000 mL/(g h)).Introducing water vapor or C02 with a certain concentration led to partial deactivation of 0.56 Pt/meso-CoO and such a deactivation was reversible.We think that the superior catalytic activity of 0.56 Pt/meso-CoO was intimately related to its good oxygen activation and benzene adsorption ability.