The development of a coal-based synthetic route to produce benzene polycarboxylic acids(BPCAs)is of great importance for the highly efficient utilization of lignites.In this paper,aqueous NaCl^(-)electrolytic system w...The development of a coal-based synthetic route to produce benzene polycarboxylic acids(BPCAs)is of great importance for the highly efficient utilization of lignites.In this paper,aqueous NaCl^(-)electrolytic system was used to oxidize Zhaotong lignite to prepare BPCAs.The electrochemical oxidation of lignite in aqueous NaCl solution could produce more BPCAs than that in aqueous NaOH solution.The aqueous NaCl electrolytic system could in-suit produce a stable OCl^(-),which was synthesized by the combination reaction between Cl_(2)and OHgenerated in the anode or cathode,respectively.The in-suit produced OCl^(-)would degrade the organic structures of the lignite dispersing in the electrolyte to generate BPCAs.The formation of BPCAs could be greatly affected by current density,electrolysis time and the addition amount of NaCl in the electrolytic system,which resulted from that the factors played an important role in the generation of OCl^(-).The coal related model compounds including anthracene and phenanthrene were used to investigate the electrochemical oxidation mechanism of the lignite.The results indicated that the aromatic ring structures in the lignite were attacked by O_(2)•^(-)from the OCl^(-)to afford BPCAs.展开更多
The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs...The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs).Herein,the demineralized Zhaotong lignite(DZL)was pyrolyzed at 250-550℃ to afford the corresponding pyrolysis residues.Subsequently,DZL and its pyrolysis residues were subjected to oxidation with aqueous sodium hypochlorite.By XRD,FTIR,and element analyses,it was found that the content and polycondensation degree of aromatic structures simultaneously increased with increasing pyrolysis temperature.Furthermore,the yield and selectivity of BPCAs both increased along with raising pyrolysis temperature in resulting products from fully oxidation of DZL and its pyrolysis residues.Based on the distribution of BPCAs,peri-condensed aromatic structures were dominant in DZL and its DPRs,and obviously increased with increasing pyrolysis temperature.More interestingly,good correlation was found between the yield of BPCAs and aromaticity parameters.Meanwhile,the yield of benzenepentacrboxylic acid was well associated with polycondensation degree parameters.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21706172)Shanxi Province Natural Science Foundation(Grant No.202203021221069 and 20210302123167).
文摘The development of a coal-based synthetic route to produce benzene polycarboxylic acids(BPCAs)is of great importance for the highly efficient utilization of lignites.In this paper,aqueous NaCl^(-)electrolytic system was used to oxidize Zhaotong lignite to prepare BPCAs.The electrochemical oxidation of lignite in aqueous NaCl solution could produce more BPCAs than that in aqueous NaOH solution.The aqueous NaCl electrolytic system could in-suit produce a stable OCl^(-),which was synthesized by the combination reaction between Cl_(2)and OHgenerated in the anode or cathode,respectively.The in-suit produced OCl^(-)would degrade the organic structures of the lignite dispersing in the electrolyte to generate BPCAs.The formation of BPCAs could be greatly affected by current density,electrolysis time and the addition amount of NaCl in the electrolytic system,which resulted from that the factors played an important role in the generation of OCl^(-).The coal related model compounds including anthracene and phenanthrene were used to investigate the electrochemical oxidation mechanism of the lignite.The results indicated that the aromatic ring structures in the lignite were attacked by O_(2)•^(-)from the OCl^(-)to afford BPCAs.
基金supported by the National Natural Science Foundation of China(Grant No.21706172)NSFC-Shanxi joint fund for coal-based low carbon(Grant No.U1610223 and U1710102)+1 种基金Key Research and Development(R&D)Projects of Shanxi Province(201903D321061)State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2021-K79).
文摘The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs).Herein,the demineralized Zhaotong lignite(DZL)was pyrolyzed at 250-550℃ to afford the corresponding pyrolysis residues.Subsequently,DZL and its pyrolysis residues were subjected to oxidation with aqueous sodium hypochlorite.By XRD,FTIR,and element analyses,it was found that the content and polycondensation degree of aromatic structures simultaneously increased with increasing pyrolysis temperature.Furthermore,the yield and selectivity of BPCAs both increased along with raising pyrolysis temperature in resulting products from fully oxidation of DZL and its pyrolysis residues.Based on the distribution of BPCAs,peri-condensed aromatic structures were dominant in DZL and its DPRs,and obviously increased with increasing pyrolysis temperature.More interestingly,good correlation was found between the yield of BPCAs and aromaticity parameters.Meanwhile,the yield of benzenepentacrboxylic acid was well associated with polycondensation degree parameters.