The molecular geometries and electronic structures of two isomers of benzotrifuroxan (BTF) have been studied using ab initio molecular orbital method at the HF/6 31G * level. The calculated results show that the...The molecular geometries and electronic structures of two isomers of benzotrifuroxan (BTF) have been studied using ab initio molecular orbital method at the HF/6 31G * level. The calculated results show that the hexanitroso isomer has much higher energy than the tetracyclic form and is unstable. Infrared frequencies have been calculated for the stable tetracyclic structure and scaled by 0.89. The scaled frequencies agree well with the available experimental results, and have been used to derive the standard thermodynamic functions, heat capacity( Cp °), entropy( S °) and enthalpy( H° H 298 °).展开更多
The stability of benzotrifuroxan (BTF) and its mixtures with TATNB,TCTNB or NaN3 was studied The explosive performance of BTF was affected by all impurities.NaN3 could increase the thermal sensitivity of BTF,whereas...The stability of benzotrifuroxan (BTF) and its mixtures with TATNB,TCTNB or NaN3 was studied The explosive performance of BTF was affected by all impurities.NaN3 could increase the thermal sensitivity of BTF,whereas TATNB could enhance the mechanic sensitivity.展开更多
To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal us...To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence.展开更多
文摘The molecular geometries and electronic structures of two isomers of benzotrifuroxan (BTF) have been studied using ab initio molecular orbital method at the HF/6 31G * level. The calculated results show that the hexanitroso isomer has much higher energy than the tetracyclic form and is unstable. Infrared frequencies have been calculated for the stable tetracyclic structure and scaled by 0.89. The scaled frequencies agree well with the available experimental results, and have been used to derive the standard thermodynamic functions, heat capacity( Cp °), entropy( S °) and enthalpy( H° H 298 °).
文摘The stability of benzotrifuroxan (BTF) and its mixtures with TATNB,TCTNB or NaN3 was studied The explosive performance of BTF was affected by all impurities.NaN3 could increase the thermal sensitivity of BTF,whereas TATNB could enhance the mechanic sensitivity.
文摘To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence.