In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ...The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE...Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.展开更多
The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary d...The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary damping mechanism.Meanwhile,the dislocation damping exhibits dynamic hysteresis at low strain amplitudes and static hysteresis at high strain amplitudes.Moreover,the damping capacity is rather sensitive to the volume fraction.Compared to unreinforced aluminum alloy,the additions of amorphous carbon fibers into the aluminum matrix can improve damping capacity below the volume fraction of 30%,whereas worsen above the volume fraction of 40%.展开更多
Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical prope...Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrice...To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...展开更多
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a re...The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.展开更多
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr...A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.展开更多
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t...A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys.展开更多
Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. Th...Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. The extrusion processing was applied following the infiltration processing directly. The tensile property and microstructure of the Csf/AZ91D and that of the die-casting and extruded AZ91D alloy was compared. The results show that the short carbon fiber reinforced AZ91D alloy present excellent tensile property. The tensile strength and modulus of elasticity of Csf/AZ91D is about 50% and 18% higher than that of cast AZ91D alloy, respectively. The elongation to fracture of Csf/AZ91D is about 50% lower than that of AZ91D alloy.展开更多
The mechanical properties and deformation mechanisms of unidirectional carbon fiber reinforced magnesium composites under tensile loading are studied. Two different materials are used as fiber coatings: a single sili...The mechanical properties and deformation mechanisms of unidirectional carbon fiber reinforced magnesium composites under tensile loading are studied. Two different materials are used as fiber coatings: a single silica and a gradient C/SiC/SiO[sb 2]. The results show that, under the same preparation conditions, composite with the former coating is broken in a non-cumulative mode and its failure stress is rather low. Conversely, the latter coating demonstrates much better efficiency and the corresponding composite is broken in a cumulative mode.展开更多
The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial...The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial ratios and the complex chirality parameters, were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range. The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed. The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.展开更多
In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(...In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep.展开更多
Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revea...Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revealed in the quasi-static crush test that its energy absorption capability was controlled significantly from 8 to 178 kJ/kg by changing the curvature of the plug. The range of energy absorption covers almost all types of CFRP tube reported in the literature. A dynamic crush test up to 55 km/h was then performed by drop weight impact tests. The energy absorption capability of the CFRP tube in the dynamic crush test was very similar to that in the quasi-static crush test. A simple design concept of energy absorption for a CFRP tube, using the double-sided plug, was proposed.展开更多
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve...Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.展开更多
Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conv...Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.展开更多
Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challeng...Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials.Here,we developed a high-strength recyclable epoxy resin(HREP)based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A(DGEBA),pentaerythritol tetra(3-mercapto-propionate)(PETMP),and vanillin epoxy resin(VEPR).At high temperatures,the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network,giving it significant reprocessing ability.Moreover,HREP exhibited excellent solvent resistance due to the increased cross-linking density.Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids(HBP-AMIM+PF6-)as the reinforcing agent,high performance CFRPs were successfully prepared.The tensile strength,interfacial shear strength(IFSS)and interlaminar shear strength(ILSS)of the optimized formulation(HREP20/CF-HBPPF6)were 1016.1,70.8 and 76.0 MPa,respectively.In addition,the CFRPs demonstrated excellent solvent and acid/alkali-resistance.The CFRPs could completely degrade within 24 h in DMSO at 140℃,and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.展开更多
T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, an...T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices.展开更多
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.
基金financially supported by ISSP RAS-Russian Government contracts
文摘The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
文摘Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.
文摘The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary damping mechanism.Meanwhile,the dislocation damping exhibits dynamic hysteresis at low strain amplitudes and static hysteresis at high strain amplitudes.Moreover,the damping capacity is rather sensitive to the volume fraction.Compared to unreinforced aluminum alloy,the additions of amorphous carbon fibers into the aluminum matrix can improve damping capacity below the volume fraction of 30%,whereas worsen above the volume fraction of 40%.
基金supported by the Projects of National Key Research and Development Program of China(2018YFA0703300,2018YFB1105100,2018YFC2001300)the National Natural Science Foundation of China(5167050531,51822504,91848204)+1 种基金Key Scientific and Technological Project of Jilin Province(20180201051GX)Program for JLU Science and Technology Innovative Research Team(2017TD-04)。
文摘Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
文摘To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...
文摘The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.
文摘A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.
基金Supported by National Key R&D Program of China(Grant Nos.2017YFB1103400,2016YFB1100902)National Natural Science Foundation of China(Grant No.51575430,51811530107)The Youth Innovation Team of Shaanxi Universities.
文摘A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys.
基金Supported by the National Natural Science Foundation of China (50575185)the Foundation of Aeronautic Science of China (05G53048)the Natural Science Foundation of Shaanxi Province (2005E23)
文摘Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. The extrusion processing was applied following the infiltration processing directly. The tensile property and microstructure of the Csf/AZ91D and that of the die-casting and extruded AZ91D alloy was compared. The results show that the short carbon fiber reinforced AZ91D alloy present excellent tensile property. The tensile strength and modulus of elasticity of Csf/AZ91D is about 50% and 18% higher than that of cast AZ91D alloy, respectively. The elongation to fracture of Csf/AZ91D is about 50% lower than that of AZ91D alloy.
文摘The mechanical properties and deformation mechanisms of unidirectional carbon fiber reinforced magnesium composites under tensile loading are studied. Two different materials are used as fiber coatings: a single silica and a gradient C/SiC/SiO[sb 2]. The results show that, under the same preparation conditions, composite with the former coating is broken in a non-cumulative mode and its failure stress is rather low. Conversely, the latter coating demonstrates much better efficiency and the corresponding composite is broken in a cumulative mode.
基金Hubei Provincial department of education(No.2000A4002)
文摘The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial ratios and the complex chirality parameters, were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range. The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed. The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.
基金the German Academic Exchange Service (DAAD) for providing a scholarship to Dr. Sinan Kandemir during his tenure at Helmholtz-Zentrum Hereon (HZH)
文摘In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep.
文摘Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revealed in the quasi-static crush test that its energy absorption capability was controlled significantly from 8 to 178 kJ/kg by changing the curvature of the plug. The range of energy absorption covers almost all types of CFRP tube reported in the literature. A dynamic crush test up to 55 km/h was then performed by drop weight impact tests. The energy absorption capability of the CFRP tube in the dynamic crush test was very similar to that in the quasi-static crush test. A simple design concept of energy absorption for a CFRP tube, using the double-sided plug, was proposed.
文摘Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.
文摘Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A2069 and 51403242)the Natural Science Foundation of Hubei Province(No.2024AFB800)+5 种基金the Fundamental Research Funds for the Central Universities,South-Central Minzu University(Nos.CZY23017 and CZD24001)the Innovation Group of National Ethnic Affairs Commission of China(No.MZR20006)the Fund for Academic Innovation Teams of South-Central Minzu University(No.XTZ24012)Scientific Research Platforms of South-Central Minzu University(No.PTZ24013)the Open Fund for Key Lab of Guangdong High Property and Functional Macromolecular Materials,China(No.20240007)State Key Laboratory of New Textile Materials and Advanced Processing Technologies(No.FZ20230012)。
文摘Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials.Here,we developed a high-strength recyclable epoxy resin(HREP)based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A(DGEBA),pentaerythritol tetra(3-mercapto-propionate)(PETMP),and vanillin epoxy resin(VEPR).At high temperatures,the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network,giving it significant reprocessing ability.Moreover,HREP exhibited excellent solvent resistance due to the increased cross-linking density.Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids(HBP-AMIM+PF6-)as the reinforcing agent,high performance CFRPs were successfully prepared.The tensile strength,interfacial shear strength(IFSS)and interlaminar shear strength(ILSS)of the optimized formulation(HREP20/CF-HBPPF6)were 1016.1,70.8 and 76.0 MPa,respectively.In addition,the CFRPs demonstrated excellent solvent and acid/alkali-resistance.The CFRPs could completely degrade within 24 h in DMSO at 140℃,and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles.
文摘T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices.