期刊文献+
共找到834篇文章
< 1 2 42 >
每页显示 20 50 100
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
1
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite Cf/Al composite COATING WETTABILITY mechanical properties
下载PDF
On the liquid-phase technology of carbon fiber/aluminum matrix composites 被引量:4
2
作者 Sergei Galyshev Andrew Gomzin +2 位作者 Rida Gallyamova Igor Khodos Fanil Musin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1578-1584,共7页
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ... The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed. 展开更多
关键词 carbon fiber/aluminum matrix COMPOSITE LIQUID-PHASE fabrication INFILTRATION pressure COMPOSITE POROSITY COMPOSITE wire ULTRASONIC
下载PDF
Synergistic regulation of current-carrying wear performance of resin matrix carbon brush composites with tungsten copper composite powder 被引量:1
3
作者 TU Chuan-jun GONG Pei +4 位作者 REN Gai-mei CHEN Gang CHEN Jian HONG Li-rui LIU Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期2973-2987,共15页
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak... Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear. 展开更多
关键词 resin matrix carbon brush composite tungsten copper composite powder current-carrying wear particle reinforcement
下载PDF
Thermo-physical Properties of Continuous Carbon Fiber Reinforced Copper Matrix Composites
4
作者 曹金华 黄俊波 陈先有 《材料工程》 EI CAS CSCD 北大核心 2007年第z1期61-65,共5页
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE... Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites. 展开更多
关键词 carbon fiber copper matrix composites THERMAL EXPANSION THERMAL CONDUCTIVITY
下载PDF
Damping capacity of amorphous carbon fiber/aluminum matrix composites at room temperature
5
作者 LI Aibin,WANG Hongmei,LI Shasha,and ZHENG Peiqi School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期115-119,共5页
The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary d... The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary damping mechanism.Meanwhile,the dislocation damping exhibits dynamic hysteresis at low strain amplitudes and static hysteresis at high strain amplitudes.Moreover,the damping capacity is rather sensitive to the volume fraction.Compared to unreinforced aluminum alloy,the additions of amorphous carbon fibers into the aluminum matrix can improve damping capacity below the volume fraction of 30%,whereas worsen above the volume fraction of 40%. 展开更多
关键词 carbon fiber aluminum matrix composite damping capacity volume fraction
下载PDF
3D printed aluminum matrix composites with well-defined ordered structures of shear-induced aligned carbon fibers
6
作者 Yunhong Liang Han Wu +2 位作者 Zhaohua Lin Qingping Liu Zhihui Zhang 《Nano Materials Science》 EI CAS CSCD 2022年第4期366-375,共10页
Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical prope... Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement. 展开更多
关键词 3D printing Shear-induced alignment carbon fiber Aluminum matrix composites Powder metallurgy
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
7
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Mechanical properties of short carbon/glass fiber reinforced high mechanical performance epoxy resins 被引量:1
8
作者 张竞 黄培 《Journal of Chongqing University》 CAS 2009年第4期222-230,共9页
To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrice... To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq... 展开更多
关键词 epoxy resin matrix fibers composites mechanical properties
下载PDF
Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic 被引量:1
9
作者 Tae Kun Jeong Masahito Ueda 《Open Journal of Composite Materials》 2016年第1期8-17,共10页
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a re... The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers. 展开更多
关键词 Polymer matrix Composite carbon fiber Compressive Failure Kink-Band Model Composite
下载PDF
Ablation Property of Ceramics/Carbon Fibers/Resin Novel Super-hybrid Composite
10
作者 JunQIU XiaomingCAO +1 位作者 ChongTIAN JinsongZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期92-94,共3页
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr... A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure. 展开更多
关键词 Ablation performance carbon fiber Modified phenolic resin Three-dimensional reticulated SiC ceramic Super-hybrid composite materials
下载PDF
Fiber Traction Printing:A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite 被引量:6
11
作者 Xin Wang Xiaoyong Tian +1 位作者 Qin Lian Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期69-79,共11页
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t... A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys. 展开更多
关键词 3D printing Metal matrix composite CAPILLARITY Continuous carbon fiber
下载PDF
Fabrication of Short Carbon Fiber Reinforced AZ91D Alloy by Infiltration-Extrusion Integrated Technique 被引量:1
12
作者 Ouyang Haibo Li Hejun Qi Lehua Li Zhengjia Su Lizheng Wei Jianfeng 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A03期100-104,共5页
Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. Th... Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. The extrusion processing was applied following the infiltration processing directly. The tensile property and microstructure of the Csf/AZ91D and that of the die-casting and extruded AZ91D alloy was compared. The results show that the short carbon fiber reinforced AZ91D alloy present excellent tensile property. The tensile strength and modulus of elasticity of Csf/AZ91D is about 50% and 18% higher than that of cast AZ91D alloy, respectively. The elongation to fracture of Csf/AZ91D is about 50% lower than that of AZ91D alloy. 展开更多
关键词 碳纤维增强镁合金 制备方法 物理性能 微观结构
下载PDF
INFLUENCE OF FIBER COATING ON TENSILE BEHAVIOR OF UNIDIRECTIONAL C/Mg COMPOSITES
13
作者 Zhang, K. Wang, Y.Q. +2 位作者 Zhou, B.L. Zhou, Y.H. Li, H.L. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第5期398-402,共5页
The mechanical properties and deformation mechanisms of unidirectional carbon fiber reinforced magnesium composites under tensile loading are studied. Two different materials are used as fiber coatings: a single sili... The mechanical properties and deformation mechanisms of unidirectional carbon fiber reinforced magnesium composites under tensile loading are studied. Two different materials are used as fiber coatings: a single silica and a gradient C/SiC/SiO[sb 2]. The results show that, under the same preparation conditions, composite with the former coating is broken in a non-cumulative mode and its failure stress is rather low. Conversely, the latter coating demonstrates much better efficiency and the corresponding composite is broken in a cumulative mode. 展开更多
关键词 Metallic matrix composites carbon fibers Tensile strength Elastic moduli Coatings SILICA Deformation Crack propagation Crack initiation FRACTURE Stresses STRAIN
下载PDF
Preparation and Properties of Carbon Fiber Chiral Materials
14
作者 ZHANG Ping HUANG Zhixin WANG Guoqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期510-512,共3页
The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial... The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial ratios and the complex chirality parameters, were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range. The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed. The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material. 展开更多
关键词 carbon fiber composite matrix circular waveguide method rotation angle axial ratio chirality parameter
下载PDF
Influence of recycled carbon fiber addition on the microstructure and creep response of extruded AZ91 magnesium alloy
15
作者 Sinan Kandemir Jan Bohlen Hajo Dieringa 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2518-2529,共12页
In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(... In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep. 展开更多
关键词 Metal matrix composites Magnesium alloys Recycled carbon fiber Extrusion Microstructure Mechanical properties CREEP
下载PDF
Controlling the Energy Absorption Capability of a Unidirectional Carbon Fiber Reinforced Plastic Tube Using a Double-Sided Plug
16
作者 Masahito Ueda Takehito Tsuji Tae-Kun Jeong 《Open Journal of Composite Materials》 2015年第1期30-40,共11页
Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revea... Quasi-static and dynamic crush tests of a unidirectional carbon fiber reinforced plastic (CFRP) circular tube were performed, and its energy absorption capability was controlled using a double-sided plug. It was revealed in the quasi-static crush test that its energy absorption capability was controlled significantly from 8 to 178 kJ/kg by changing the curvature of the plug. The range of energy absorption covers almost all types of CFRP tube reported in the literature. A dynamic crush test up to 55 km/h was then performed by drop weight impact tests. The energy absorption capability of the CFRP tube in the dynamic crush test was very similar to that in the quasi-static crush test. A simple design concept of energy absorption for a CFRP tube, using the double-sided plug, was proposed. 展开更多
关键词 Polymer matrix Composite carbon fiber PROGRESSIVE CRUSHING Energy Absorption CRUSH Can
下载PDF
Fabrication and Characterization of Glass Fiber with SiC Reinforced Polymer Composites
17
作者 Rajashekar Reddy Palle Jens Schuster +1 位作者 Yousuf Pasha Shaik Monis Kazmi 《Open Journal of Composite Materials》 2022年第1期16-29,共14页
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve... Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin. 展开更多
关键词 Polymer matrix Composite Epoxy and Polyester resins Silicon Carbide Glass fibers Hand Lay-Up Technique Modelling
下载PDF
Progress in Recycling of Composites with Polycyanurate Matrix
18
作者 Christian Dreyer Dominik Sothje Monika Bauer 《Advances in Chemical Engineering and Science》 2014年第2期167-183,共17页
Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conv... Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C. 展开更多
关键词 Polycyanurate Composite Recycling THERMOSET Cyanate Ester resins High Performance Polymers Reinforcement fiber carbon fiber Natural fiber
下载PDF
Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network
19
作者 Gui-Lian Shi Ting-Cheng Li +1 位作者 Dao-Hong Zhang Jun-Heng Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1514-1524,I0011,共12页
Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challeng... Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials.Here,we developed a high-strength recyclable epoxy resin(HREP)based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A(DGEBA),pentaerythritol tetra(3-mercapto-propionate)(PETMP),and vanillin epoxy resin(VEPR).At high temperatures,the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network,giving it significant reprocessing ability.Moreover,HREP exhibited excellent solvent resistance due to the increased cross-linking density.Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids(HBP-AMIM+PF6-)as the reinforcing agent,high performance CFRPs were successfully prepared.The tensile strength,interfacial shear strength(IFSS)and interlaminar shear strength(ILSS)of the optimized formulation(HREP20/CF-HBPPF6)were 1016.1,70.8 and 76.0 MPa,respectively.In addition,the CFRPs demonstrated excellent solvent and acid/alkali-resistance.The CFRPs could completely degrade within 24 h in DMSO at 140℃,and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles. 展开更多
关键词 Epoxy resin Hyperbranched ionic liquid Recycling carbon fiber composites
原文传递
Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites 被引量:8
20
作者 ZHANG Yunhe WU Gaohui 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期102-107,共6页
T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, an... T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices. 展开更多
关键词 carbon fiber aluminum matrix composite interface reaction mechanical properties
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部