A new set of trial functions for 1s^22sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s^22sns (n...A new set of trial functions for 1s^22sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s^22sns (n = 3 - 6) configurations in a beryllium atom. Non-relativistic energy, polarization correction and relativistic correction which include mass correction, one- and two-body Darwin corrections, spin-spin contact interaction and orbit-orbit interaction, are calculated respectively. The results are in good agreement with experimental data.展开更多
We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are perf...We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.展开更多
The parabolic cylindrical lens shaped quantum dot is investigated theoretically. The Schrǒdinger equation for an electron confined in this structure is solved in the parabolic cylindrical coordinate system. The wavef...The parabolic cylindrical lens shaped quantum dot is investigated theoretically. The Schrǒdinger equation for an electron confined in this structure is solved in the parabolic cylindrical coordinate system. The wavefunctions for the electron are presented in terms of confluent hypergeometric functions, and the electron energy spectra are also obtained.展开更多
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No 2005LXAH06)the Research Foundation of Education Bureau of Anhui Province, China (Grant Nos KJ2008A145 and 2002HBL05)
文摘A new set of trial functions for 1s^22sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s^22sns (n = 3 - 6) configurations in a beryllium atom. Non-relativistic energy, polarization correction and relativistic correction which include mass correction, one- and two-body Darwin corrections, spin-spin contact interaction and orbit-orbit interaction, are calculated respectively. The results are in good agreement with experimental data.
文摘We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.
文摘The parabolic cylindrical lens shaped quantum dot is investigated theoretically. The Schrǒdinger equation for an electron confined in this structure is solved in the parabolic cylindrical coordinate system. The wavefunctions for the electron are presented in terms of confluent hypergeometric functions, and the electron energy spectra are also obtained.