In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the mea...In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the measurement and the target state increases with the introduction of the Doppler measurement.Therefore,target tracking in the Doppler radar is a nonlinear filtering problem.In order to handle this problem,the Kalman filter form of best linear unbiased estimation(BLUE)with position measurements is proposed,which is combined with the sequential filtering algorithm to handle the Doppler measurement further,where the statistic characteristic of the converted measurement error is calculated based on the predicted information in the sequential filter.Moreover,the algorithm is extended to the maneuvering target tracking case,where the interacting multiple model(IMM)algorithm is used as the basic framework and the model probabilities are updated according to the BLUE position filter and the sequential filter,and the final estimation is a weighted sum of the outputs from the sequential filters and the model probabilities.Simulation results show that compared with existing approaches,the proposed algorithm can realize target tracking with preferable tracking precision and the extended method can achieve effective maneuvering target tracking.展开更多
In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown u...In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown under moving extremes ranked set sampling(MERSS).Explicit mathematical expressions of these estimators and their variances are derived.Their relative efficiencies with respect to the minimum variance unbiased estimators(MVUEs)under simple random sampling(SRS)are compared for the cases of some usual distributions.The numerical results show that the BLUEs under MERSS are significantly more efficient than the MVUEs under SRS.展开更多
基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation,BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,...基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation,BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,推导出对应的BLUE滤波模型;针对目标从地面站上空过顶时出现无效量测的问题,通过对高程量测补偿的方法予以克服,解决传统算法在强非线性量测下误差较大的弊病。与经典方法的性能对比表明,改进算法有效地抑制了强非线性量测下的滤波发散,有很强的鲁棒性和实时性。展开更多
雷达机动目标跟踪问题中,通常目标运动模型可精确地在直角坐标系下建模,但大多数情形下模型是非线性的,同时在传感器坐标系下所获得目标量测又是直接可用的.通过将无迹变换与最优线性无偏滤波器有机结合,提出一种新的BLUE(Best Linear U...雷达机动目标跟踪问题中,通常目标运动模型可精确地在直角坐标系下建模,但大多数情形下模型是非线性的,同时在传感器坐标系下所获得目标量测又是直接可用的.通过将无迹变换与最优线性无偏滤波器有机结合,提出一种新的BLUE(Best Linear Unbiased Estimator)滤波算法,以便解决上述非线性跟踪问题.首先,该算法利用无迹变换对经由直角坐标系下非线性目标运动模型得到的目标状态及其协方差作出预测,然后在保持传感器坐标系(极坐标系)下所固有的量测误差的同时,直接对它们作出状态估计.在算法推导及Monte-Carlo仿真过程中,将新的BLUE滤波算法和EKF(Extended Kalman Filter)、UKF(Unscented Kalman Filter)滤波算法进行比较,结果表明新算法的有效性和适用性.展开更多
最佳线性无偏估计(BLUE:Best Linear Unbiased Estimation)算法用于目标跟踪时,受斜距、高程参量间的"共线"效应影响,对近程目标估计误差会增大甚至发散。针对此问题,在量测转换模型中引入斜距、高程预测,构建斜距、高程参量...最佳线性无偏估计(BLUE:Best Linear Unbiased Estimation)算法用于目标跟踪时,受斜距、高程参量间的"共线"效应影响,对近程目标估计误差会增大甚至发散。针对此问题,在量测转换模型中引入斜距、高程预测,构建斜距、高程参量有偏估计,抑制"共线"效应。基于非线性参数误差最小准则推导斜距、高程估计的权值和偏置,建立基于非线性观测和状态预测融合估计的量测转换模型。基于该模型的BLUE算法能更精确的捕捉转换量测误差特性,以较小计算代价获得性能提升,数值仿真鲁棒性好,有很好应用前景。展开更多
基金This work was supported by the Basic Research Operation Foundation for Central University(ZYGX2016J039).
文摘In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the measurement and the target state increases with the introduction of the Doppler measurement.Therefore,target tracking in the Doppler radar is a nonlinear filtering problem.In order to handle this problem,the Kalman filter form of best linear unbiased estimation(BLUE)with position measurements is proposed,which is combined with the sequential filtering algorithm to handle the Doppler measurement further,where the statistic characteristic of the converted measurement error is calculated based on the predicted information in the sequential filter.Moreover,the algorithm is extended to the maneuvering target tracking case,where the interacting multiple model(IMM)algorithm is used as the basic framework and the model probabilities are updated according to the BLUE position filter and the sequential filter,and the final estimation is a weighted sum of the outputs from the sequential filters and the model probabilities.Simulation results show that compared with existing approaches,the proposed algorithm can realize target tracking with preferable tracking precision and the extended method can achieve effective maneuvering target tracking.
基金supported by National Science Foundation of China (Grant Nos.12261036 and 11901236)Scientific Research Fund of Hunan Provincial Education Department (Grant No.21A0328)+1 种基金Provincial Natural Science Foundation of Hunan (Grant No.2022JJ30469)Young Core Teacher Foundation of Hunan Province (Grant No.[2020]43)。
文摘In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown under moving extremes ranked set sampling(MERSS).Explicit mathematical expressions of these estimators and their variances are derived.Their relative efficiencies with respect to the minimum variance unbiased estimators(MVUEs)under simple random sampling(SRS)are compared for the cases of some usual distributions.The numerical results show that the BLUEs under MERSS are significantly more efficient than the MVUEs under SRS.
文摘基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation,BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,推导出对应的BLUE滤波模型;针对目标从地面站上空过顶时出现无效量测的问题,通过对高程量测补偿的方法予以克服,解决传统算法在强非线性量测下误差较大的弊病。与经典方法的性能对比表明,改进算法有效地抑制了强非线性量测下的滤波发散,有很强的鲁棒性和实时性。
文摘最佳线性无偏估计(BLUE:Best Linear Unbiased Estimation)算法用于目标跟踪时,受斜距、高程参量间的"共线"效应影响,对近程目标估计误差会增大甚至发散。针对此问题,在量测转换模型中引入斜距、高程预测,构建斜距、高程参量有偏估计,抑制"共线"效应。基于非线性参数误差最小准则推导斜距、高程估计的权值和偏置,建立基于非线性观测和状态预测融合估计的量测转换模型。基于该模型的BLUE算法能更精确的捕捉转换量测误差特性,以较小计算代价获得性能提升,数值仿真鲁棒性好,有很好应用前景。