Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quali...Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quality is poor,the effective contact area between the gear mating surfaces decreases,affecting the stability of the fit and thus the transmission accuracy,so it is of great significance to optimize the surface quality of the contour bevel gear.This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method,and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece.Then,the surface defects on the machined surface of the workpiece are studied by SEM,and the causes of the surface defects are analyzed by EDS.After that,XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis,and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment.The research results are of great significance for improving the machining accuracy of contour bevel gears,reducing friction losses and improving transmission efficiency.展开更多
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given...This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.展开更多
A geometric modeling method for generating-manufactured spiral bevel gears(SBGs) is proposed. It consists of two steps: (1) creating a reference model by simulating the process of cutting spiral bevel gear,(2) ...A geometric modeling method for generating-manufactured spiral bevel gears(SBGs) is proposed. It consists of two steps: (1) creating a reference model by simulating the process of cutting spiral bevel gear,(2) reconstructing the final solid model by collecting data points from the reference model and fitting these points into NURBS surfaces. In this method,cutting simulation avoids abstruse mathematical theories and complex methods,thus making it convenient to obtain data points on the complex tooth surface before the gear is manufactured and efficient to increase the accuracy of the solid model. Also,the representations of tooth surfaces of the final model is unified as a NURBS surface function. The NURBS surface is continuous and smooth,thus it is available for wide applications in CAD/CAE. The experiment proves that the method can be used to establish an accurate pair of SBG models,thus providing a feasible and effective way for CAD/CAE modeling.展开更多
The generating motion of the generating gear and the work gear on spiral bevel gear NC machining is analyzed. The mathematical model of the tooth surface of spiral bevel gear is presented. A direct interpolation algor...The generating motion of the generating gear and the work gear on spiral bevel gear NC machining is analyzed. The mathematical model of the tooth surface of spiral bevel gear is presented. A direct interpolation algorithm of spiral bevel gear NC machining is proposed, thus establishing the relationship between the motion of the cutter-head center and the rotation of the work gear. The interpolation algorithm is implemented to control the gear cutting on self-developed spiral bevel gear NC cutting machine. An example is given to verify the mathematical model and the interpolation algorithm.展开更多
Lancet needle, having three planes at the tip to generate a sharp lancet point, is the most common needle tip geometry and used for medical procedures. This research presents two five-plane lancet needle designs, the ...Lancet needle, having three planes at the tip to generate a sharp lancet point, is the most common needle tip geometry and used for medical procedures. This research presents two five-plane lancet needle designs, the five-plane lancet needle with two back bevels (FLN-B) and five-plane lancet needle with two front bevels (FLN-F), to study the effects of two additional bevel planes on the reduction of soft tissue cutting force. Mathematical models to calculate the inclination angle and rake angle along the cutting edges of FLN-B and FLN-F are developed. By using the grinding process, the prototype FLN-B and FLN-F needles are fabricated. And their inclination and rake angles along the cutting edges are investigated and compared to that of regular lancet needle. Needles insertion tests were conducted on soft PVC phantom which mimics the soft tissue. The initial peak insertion force and steady-state cutting force during needle insertion were identified, and the effect of cutting edge on needle soft tissue cutting force was studied. Compared to lancet needle, FLN-B and FLN-F both have higher inclination and rake angles at the tip cutting edge, could reduce the initial peak needle insertion force and tissue cutting forces, and thus can efficiently cut the soft tissue for medical applications.展开更多
The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulat...The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.展开更多
In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of s...In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.展开更多
Aviation spiral bevel gears are often generated by spiral generated modified(SGM) roll method.In this style,pinion tooth surface modified generation strategy has an important influence on the meshing and contact per...Aviation spiral bevel gears are often generated by spiral generated modified(SGM) roll method.In this style,pinion tooth surface modified generation strategy has an important influence on the meshing and contact performances.For the optimal contact pattern and transmission error function,local synthesis is applied to obtain the machine-tool settings of pinion.For digitized machine,four tooth surface generation styles of pinion are proposed.For every style,tooth contact analysis(TCA) is applied to obtain contact pattern and transmission error function.For the difference between TCA transmission error function and design objective curve,the degree of symmetry and agreement are defined and the corresponding sub-objective functions are established.Linear weighted combination method is applied to get an equivalent objective function to evaluate the shape of transmission error function.The computer programs for the process above are developed to analyze the meshing performances of the four pinion tooth surface generation styles for a pair of aviation spiral bevel gears with 38/43 teeth numbers.The four analytical results are compared with each other and show that the incomplete modified roll is optimal for this gear pair.This study is an expansion to generation strategy of spiral bevel gears,and offers new alternatives to computer numerical control(CNC) manufacture of spiral bevel gears.展开更多
This paper presents a method for measurement of deviation of the real gear tooth surface from the theoretical one with a coordinate measurement machine and compensation of repeatable parts. By investigation of charact...This paper presents a method for measurement of deviation of the real gear tooth surface from the theoretical one with a coordinate measurement machine and compensation of repeatable parts. By investigation of characteristics of distortion of the gear tooth surface along the circle direction, the deviation is derived from distortion, and the definition of deviation with the geometrical invariability is proposed. Then the approach for determination of the location and orientation of the gear with respect to the coordinate measurement machine and the measurement way are developed. The deviation is represented with a difference surface, and an algorithm for derivation of parameters of global form deviations from the discrete points has been provided. Finally, the compensation approach is discussed.展开更多
The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the...The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the filling rules for the metal were analyzed by the elastic-plastic finite element method (FEM). The results show that there is a great difference among closed-die cold forging, extrusion and forging, as far as the metal flowing is concerned. The outer addendum cannot be filled completely in the closed-die cold forging of the bevel gears, and the round angle will be formed. But it does not influence the application of the bevel gears. At the beginning, the rigid area is formed in the cavity of the lower die. And then it will move upwards to supply the metal for the gear filling. For the closed-die cold forging of the bevel gears, the force acting on the upper die and the lower die is significantly different.展开更多
Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of...Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of fatigue, wear, noise and vibration, while little attention is paid to the effect of multiple alignment errors on the gear tooth wear. To study the influence of alignment errors on the gear tooth wear, a simulated model of a straight bevel gear pair is established. Then, the contact pressure on the tooth surface is analyzed under the various alignment errors according to the Archard wear relationship. The main combinations of alignment errors played vital roles on the tooth wear are investigated. The result shows that under the single alignment error, the contact pressure moves to the tooth heel and increases greatly at here when ?P=0.1 or ?G=0.1; when ?E=–0.03, the contact pressure greatly increases at the tooth heel, but it obviously increases at the tooth toe when ?E=0.03; the alignment error ?γ=1 has little effect on the contact pressure on the tooth surface. Moreover, the combination of ?P, ?G, ?E〈0 and ?γ is the most dangerous type among the multiple alignment errors. This research provides valuable guidelines for predicting the tooth wear under various alignment errors.展开更多
The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the ...The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the spiral bevel gear model were adopted,where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of transmission errors.The dynamic response,bifurcation map,time domain response,phase curve and Poincare map were obtained by applying the explicit Runge-Kutta integration routine with variable-step.A comparative study was carried out and some profound phenomena were detected.The results show that there are many different kinds of tooth rattling phenomena at low speed.With the increase of speed,the system enters into stable motion without any rattling in the region(0.72,1.64),which indicates that the system with predesigned parabolic function of transmission error has preferable capability at high speed.展开更多
Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis err...Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis error model, and the validity of model was confirmed by the experiment. Additionally, in grinding wheel tool point coordinate system, the errors of six degrees of freedom were simulated when the grinding wheel revolving around C-axis, moving along X-axis and Y-axis. The influence of these six errors on teeth space, helix angle, pitch, teeth profile was discussed. The simulation results show that the angle error is in the range from -0.148 4 tad to -0.241 9 rad when grinding wheel moving along X, Y-axis; the translation error is in the range from 0.866 0 μm to 3.605 3μm when grinding wheel moving along X-axis. These angle and translation errors have a great influence on the helix angle, pitch, teeth thickness and tooth socket.展开更多
We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double cir...We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double circular arc tooth profile and based on the equal tooth strength principle. The nutation drive meshing coordinate system was set up by introducing the cone vertex error, tilt error, nutation angle error and spiral angle error. The tooth profile equations of the double circular arc external and internal spiral bevel gears were further obtained based on the crown gear tooth profile equation concerning above mentioned error parameters. The influences of the nutation gear reducer tooth contact conditions were analyzed with the gear tilt error and axial misalignment error. Finally, the correctness of the theoretical analysis was verified by the contact spot test.展开更多
A virtual computerized numerical control C CNC) processing system is built for spiral bevel and hypoid gears. The pre-designed process of the solution to locate the way of realization is investigated. A kind of combi...A virtual computerized numerical control C CNC) processing system is built for spiral bevel and hypoid gears. The pre-designed process of the solution to locate the way of realization is investigated. A kind of combined programming method and principle of solid modeling are chosen. Multienvironmental programming thought and the inter-connected mechanisms between different environments are applied in the proposed system. The problems of data exchange and compatibility of modules are settled. Environment of the system is founded with object oriented programming thought. AutoCAD is located as the graphic environment. Matlab is used for editing the computation module. Virtual C ++6.0 is the realization environment of the main module. Windows is the platform for realizing the multi-environmental method. Through establishing the virtual system based windows message handling mechanism and the component object model, the application of multienvironmental programming is realized in the manufacture system simulation. The virtual gear product can be achieved in the accomplished software.展开更多
Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pini...Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse engineering without having known the theoretical tooth surfaces and the corresponding machine-tool settings.展开更多
A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles ...A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.展开更多
基金National Key R&D Program of China(Grant No.2019YFE0121300)Yancheng Hali Power Transmission and Intelligent Equipment Industrial Research Institute Project。
文摘Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quality is poor,the effective contact area between the gear mating surfaces decreases,affecting the stability of the fit and thus the transmission accuracy,so it is of great significance to optimize the surface quality of the contour bevel gear.This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method,and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece.Then,the surface defects on the machined surface of the workpiece are studied by SEM,and the causes of the surface defects are analyzed by EDS.After that,XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis,and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment.The research results are of great significance for improving the machining accuracy of contour bevel gears,reducing friction losses and improving transmission efficiency.
基金National Natural Science Foundation of China (50475148)Aeronautical Science Foundation of China (04C53015)Areonautical Sci-tech Innovation Foundation of China (07B53004)
文摘This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.
文摘A geometric modeling method for generating-manufactured spiral bevel gears(SBGs) is proposed. It consists of two steps: (1) creating a reference model by simulating the process of cutting spiral bevel gear,(2) reconstructing the final solid model by collecting data points from the reference model and fitting these points into NURBS surfaces. In this method,cutting simulation avoids abstruse mathematical theories and complex methods,thus making it convenient to obtain data points on the complex tooth surface before the gear is manufactured and efficient to increase the accuracy of the solid model. Also,the representations of tooth surfaces of the final model is unified as a NURBS surface function. The NURBS surface is continuous and smooth,thus it is available for wide applications in CAD/CAE. The experiment proves that the method can be used to establish an accurate pair of SBG models,thus providing a feasible and effective way for CAD/CAE modeling.
文摘The generating motion of the generating gear and the work gear on spiral bevel gear NC machining is analyzed. The mathematical model of the tooth surface of spiral bevel gear is presented. A direct interpolation algorithm of spiral bevel gear NC machining is proposed, thus establishing the relationship between the motion of the cutter-head center and the rotation of the work gear. The interpolation algorithm is implemented to control the gear cutting on self-developed spiral bevel gear NC cutting machine. An example is given to verify the mathematical model and the interpolation algorithm.
文摘Lancet needle, having three planes at the tip to generate a sharp lancet point, is the most common needle tip geometry and used for medical procedures. This research presents two five-plane lancet needle designs, the five-plane lancet needle with two back bevels (FLN-B) and five-plane lancet needle with two front bevels (FLN-F), to study the effects of two additional bevel planes on the reduction of soft tissue cutting force. Mathematical models to calculate the inclination angle and rake angle along the cutting edges of FLN-B and FLN-F are developed. By using the grinding process, the prototype FLN-B and FLN-F needles are fabricated. And their inclination and rake angles along the cutting edges are investigated and compared to that of regular lancet needle. Needles insertion tests were conducted on soft PVC phantom which mimics the soft tissue. The initial peak insertion force and steady-state cutting force during needle insertion were identified, and the effect of cutting edge on needle soft tissue cutting force was studied. Compared to lancet needle, FLN-B and FLN-F both have higher inclination and rake angles at the tip cutting edge, could reduce the initial peak needle insertion force and tissue cutting forces, and thus can efficiently cut the soft tissue for medical applications.
基金Project(51105287) supported by the National Natural Science Foundation of ChinaProject(2012BAA08003) supported by the Key Research and Development Project of New Products and New Technologies of Hubei Province, ChinaProject(2011-P05) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology,China
文摘The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.
基金Project(2011CB706800-G)supported by the National Basic Research Program of ChinaProject(51375159)supported by the National Natural Science Foundation of China+1 种基金Project(20120162110004)supported by the Postdoctoral Science Foundation of ChinaProject(2015JJ5020)supported by the Science Foundation of Hunan Province,China
文摘In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.
文摘Aviation spiral bevel gears are often generated by spiral generated modified(SGM) roll method.In this style,pinion tooth surface modified generation strategy has an important influence on the meshing and contact performances.For the optimal contact pattern and transmission error function,local synthesis is applied to obtain the machine-tool settings of pinion.For digitized machine,four tooth surface generation styles of pinion are proposed.For every style,tooth contact analysis(TCA) is applied to obtain contact pattern and transmission error function.For the difference between TCA transmission error function and design objective curve,the degree of symmetry and agreement are defined and the corresponding sub-objective functions are established.Linear weighted combination method is applied to get an equivalent objective function to evaluate the shape of transmission error function.The computer programs for the process above are developed to analyze the meshing performances of the four pinion tooth surface generation styles for a pair of aviation spiral bevel gears with 38/43 teeth numbers.The four analytical results are compared with each other and show that the incomplete modified roll is optimal for this gear pair.This study is an expansion to generation strategy of spiral bevel gears,and offers new alternatives to computer numerical control(CNC) manufacture of spiral bevel gears.
文摘This paper presents a method for measurement of deviation of the real gear tooth surface from the theoretical one with a coordinate measurement machine and compensation of repeatable parts. By investigation of characteristics of distortion of the gear tooth surface along the circle direction, the deviation is derived from distortion, and the definition of deviation with the geometrical invariability is proposed. Then the approach for determination of the location and orientation of the gear with respect to the coordinate measurement machine and the measurement way are developed. The deviation is represented with a difference surface, and an algorithm for derivation of parameters of global form deviations from the discrete points has been provided. Finally, the compensation approach is discussed.
文摘The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the filling rules for the metal were analyzed by the elastic-plastic finite element method (FEM). The results show that there is a great difference among closed-die cold forging, extrusion and forging, as far as the metal flowing is concerned. The outer addendum cannot be filled completely in the closed-die cold forging of the bevel gears, and the round angle will be formed. But it does not influence the application of the bevel gears. At the beginning, the rigid area is formed in the cavity of the lower die. And then it will move upwards to supply the metal for the gear filling. For the closed-die cold forging of the bevel gears, the force acting on the upper die and the lower die is significantly different.
基金Supported by National Natural Science Foundation of China(Grant No.51105287)Innovative Research Team Development Program of Ministry of Education of China(Grant No.IRT13087)
文摘Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of fatigue, wear, noise and vibration, while little attention is paid to the effect of multiple alignment errors on the gear tooth wear. To study the influence of alignment errors on the gear tooth wear, a simulated model of a straight bevel gear pair is established. Then, the contact pressure on the tooth surface is analyzed under the various alignment errors according to the Archard wear relationship. The main combinations of alignment errors played vital roles on the tooth wear are investigated. The result shows that under the single alignment error, the contact pressure moves to the tooth heel and increases greatly at here when ?P=0.1 or ?G=0.1; when ?E=–0.03, the contact pressure greatly increases at the tooth heel, but it obviously increases at the tooth toe when ?E=0.03; the alignment error ?γ=1 has little effect on the contact pressure on the tooth surface. Moreover, the combination of ?P, ?G, ?E〈0 and ?γ is the most dangerous type among the multiple alignment errors. This research provides valuable guidelines for predicting the tooth wear under various alignment errors.
基金Project(2011CB706800) supported by the National Basic Research Program of ChinaProject(51275530) supported by the National Natural Science Foundation of China
文摘The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the spiral bevel gear model were adopted,where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of transmission errors.The dynamic response,bifurcation map,time domain response,phase curve and Poincare map were obtained by applying the explicit Runge-Kutta integration routine with variable-step.A comparative study was carried out and some profound phenomena were detected.The results show that there are many different kinds of tooth rattling phenomena at low speed.With the increase of speed,the system enters into stable motion without any rattling in the region(0.72,1.64),which indicates that the system with predesigned parabolic function of transmission error has preferable capability at high speed.
基金Project(2005CB724104) supported by the Major State Basic Research Development Program of ChinaProject(1343-77202) supported by the Graduate Students Innovate of Central South University
文摘Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis error model, and the validity of model was confirmed by the experiment. Additionally, in grinding wheel tool point coordinate system, the errors of six degrees of freedom were simulated when the grinding wheel revolving around C-axis, moving along X-axis and Y-axis. The influence of these six errors on teeth space, helix angle, pitch, teeth profile was discussed. The simulation results show that the angle error is in the range from -0.148 4 tad to -0.241 9 rad when grinding wheel moving along X, Y-axis; the translation error is in the range from 0.866 0 μm to 3.605 3μm when grinding wheel moving along X-axis. These angle and translation errors have a great influence on the helix angle, pitch, teeth thickness and tooth socket.
基金Funded by the National Natural Science Foundation of China(Grant No.51275092)the Program of Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center(Grant No.2014H21010011)the Program of Fujian Provincial Collaborative Innovation Center for High-end Equipment Manufacturing
文摘We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double circular arc tooth profile and based on the equal tooth strength principle. The nutation drive meshing coordinate system was set up by introducing the cone vertex error, tilt error, nutation angle error and spiral angle error. The tooth profile equations of the double circular arc external and internal spiral bevel gears were further obtained based on the crown gear tooth profile equation concerning above mentioned error parameters. The influences of the nutation gear reducer tooth contact conditions were analyzed with the gear tilt error and axial misalignment error. Finally, the correctness of the theoretical analysis was verified by the contact spot test.
基金Supported by Natural Science Foundation of China (No. 50475117).
文摘A virtual computerized numerical control C CNC) processing system is built for spiral bevel and hypoid gears. The pre-designed process of the solution to locate the way of realization is investigated. A kind of combined programming method and principle of solid modeling are chosen. Multienvironmental programming thought and the inter-connected mechanisms between different environments are applied in the proposed system. The problems of data exchange and compatibility of modules are settled. Environment of the system is founded with object oriented programming thought. AutoCAD is located as the graphic environment. Matlab is used for editing the computation module. Virtual C ++6.0 is the realization environment of the main module. Windows is the platform for realizing the multi-environmental method. Through establishing the virtual system based windows message handling mechanism and the component object model, the application of multienvironmental programming is realized in the manufacture system simulation. The virtual gear product can be achieved in the accomplished software.
基金supported by Aero Propulsion Test and Demonstration of Commission of Science and Technology and Industry for Nation Defense,China (Grant No. APTD-1001B)
文摘Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse engineering without having known the theoretical tooth surfaces and the corresponding machine-tool settings.
基金Project(52175361)supported by the National Natural Science Foundation of ChinaProject(2019 CFA 041)supported by the Natural Science Foundation of Hubei Province,ChinaProject(WUT:202407002)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.