In this paper, a fuzzy operator of max-product is defined at first, and the fuzzy bi-directional associative memory (FBAM) based on the fuzzy operator of max-product is given. Then the properties and the Lyapunov stab...In this paper, a fuzzy operator of max-product is defined at first, and the fuzzy bi-directional associative memory (FBAM) based on the fuzzy operator of max-product is given. Then the properties and the Lyapunov stability of equilibriums of the networks are studied.展开更多
By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neu...By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results.展开更多
为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意...为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意力机制(multi⁃head attention,MHA)的卷积神经网络(convolutional neural network,CNN)—双向长短期记忆网络(bi⁃directional long short term memory,BiLSTM)模型进行可听噪声预测。首先,采用皮尔逊相关性分析对多种环境因素数据进行相关程度计算比较与剔除;然后,为充分挖掘可听噪声数据中的时序特征,使用CNN对多环境因素数据进行特征提取;再将提取的特征向量输入到BiLSTM中进行训练,并通过在BiLSTM端引入多头注意力机制,使模型学习权重更高的数据特征,从而提升模型预测精度;结果表明,该方法构建的组合模型可以提升考虑多因素特征可听噪声数据的预测精度,且具有较好的泛化性。展开更多
为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimizati...为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。展开更多
文摘In this paper, a fuzzy operator of max-product is defined at first, and the fuzzy bi-directional associative memory (FBAM) based on the fuzzy operator of max-product is given. Then the properties and the Lyapunov stability of equilibriums of the networks are studied.
基金supported by Natural Science Foundation of Hebei Province under Grant No.E2007000381
文摘By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results.
文摘为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意力机制(multi⁃head attention,MHA)的卷积神经网络(convolutional neural network,CNN)—双向长短期记忆网络(bi⁃directional long short term memory,BiLSTM)模型进行可听噪声预测。首先,采用皮尔逊相关性分析对多种环境因素数据进行相关程度计算比较与剔除;然后,为充分挖掘可听噪声数据中的时序特征,使用CNN对多环境因素数据进行特征提取;再将提取的特征向量输入到BiLSTM中进行训练,并通过在BiLSTM端引入多头注意力机制,使模型学习权重更高的数据特征,从而提升模型预测精度;结果表明,该方法构建的组合模型可以提升考虑多因素特征可听噪声数据的预测精度,且具有较好的泛化性。
文摘为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。