Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume...Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.展开更多
论证了一种基于SOI(Silicon On Insulator)片上工艺的,通过光强差分测量加速度的微光机电系统(MOEMS)加速度计。器件主要结构为较大悬浮质量块对称两端加工出两面V型反射镜。系统整个微机械结构在细直弹性梁支撑下,因受惯性力作用V型镜...论证了一种基于SOI(Silicon On Insulator)片上工艺的,通过光强差分测量加速度的微光机电系统(MOEMS)加速度计。器件主要结构为较大悬浮质量块对称两端加工出两面V型反射镜。系统整个微机械结构在细直弹性梁支撑下,因受惯性力作用V型镜发生位移改变,从而将引入系统中的光信号进行差分反射。最后,通过外部光电探测器测量出各通路光纤的光强信号来测算加速度值。片上微加工所得的器件经实验测量得到了:7.77×10-2μm的结构灵敏度,1.38 k Hz谐振频率,3.73m V/gn器件灵敏度和0.987的线性度。展开更多
A novel micro-opto-electro-mechanical system (MOEMS) accelerometer based on Raman-Nath diffraction is presented. It mainly consists of an FPW delay line oscillator and optical strip waveguides. The fun- damental the...A novel micro-opto-electro-mechanical system (MOEMS) accelerometer based on Raman-Nath diffraction is presented. It mainly consists of an FPW delay line oscillator and optical strip waveguides. The fun- damental theories and principles of the device are introduced briefly. A flexural plate-wave delay-line oscillator is designed to work as an acousto-optic (AO) shifter, which has a Klein-Cook parameter of 0.38. Single-mode optical strip waveguides of 2 μm in width and thicknesses of 0.6 μm are designed by using the effective index method for light transmission. The E^y00 mode waveguide polarizers are designed to ensure the consistency of the light polarization in the waveguides. The fabrication process, based on (100) oriented, 450-#m-thick silicon wafers is proposed in detail, and some difficulties in the process are discussed carefully. At last, a series of process tests are undertaken to solve the proposed problems. The results indicate that the proposed design and fabrication process of the device is dependable and realizable.展开更多
The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman-Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system tec...The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman-Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fun- damental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.展开更多
基金supports from National Natural Science Foundation of China(No.62004166)Fundamental Research Funds for the Central Universities(No.31020190QD027)+2 种基金Natural Science Basic Research Program of Shaanxi(Program No.2020JQ-199)China National Postdoctoral Program for Innovative Talents(No.BX20200279)Key Research and Development Program of Shaanxi Province(2020GXLH-Z-027,2020ZDLGY04-08).
文摘Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.
文摘论证了一种基于SOI(Silicon On Insulator)片上工艺的,通过光强差分测量加速度的微光机电系统(MOEMS)加速度计。器件主要结构为较大悬浮质量块对称两端加工出两面V型反射镜。系统整个微机械结构在细直弹性梁支撑下,因受惯性力作用V型镜发生位移改变,从而将引入系统中的光信号进行差分反射。最后,通过外部光电探测器测量出各通路光纤的光强信号来测算加速度值。片上微加工所得的器件经实验测量得到了:7.77×10-2μm的结构灵敏度,1.38 k Hz谐振频率,3.73m V/gn器件灵敏度和0.987的线性度。
文摘A novel micro-opto-electro-mechanical system (MOEMS) accelerometer based on Raman-Nath diffraction is presented. It mainly consists of an FPW delay line oscillator and optical strip waveguides. The fun- damental theories and principles of the device are introduced briefly. A flexural plate-wave delay-line oscillator is designed to work as an acousto-optic (AO) shifter, which has a Klein-Cook parameter of 0.38. Single-mode optical strip waveguides of 2 μm in width and thicknesses of 0.6 μm are designed by using the effective index method for light transmission. The E^y00 mode waveguide polarizers are designed to ensure the consistency of the light polarization in the waveguides. The fabrication process, based on (100) oriented, 450-#m-thick silicon wafers is proposed in detail, and some difficulties in the process are discussed carefully. At last, a series of process tests are undertaken to solve the proposed problems. The results indicate that the proposed design and fabrication process of the device is dependable and realizable.
文摘The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman-Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fun- damental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.