The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ...The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.展开更多
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path...Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation.展开更多
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o...The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.展开更多
Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 P...Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 Pa system, respectively. The dependence of resistivity on deposition parameters, such as deposition rate, target-to-substrate distance (TSD), oxygen flow rate and sputtering time (thickness), has been investigated, together with the structural and the optical properties. It was revealed that all ITO films exhibited lattice expansion. The resistivity of ITO thin films shows significant substrate effect: much lower resistivity and broader process window have been reproducibly achieved for the deposition of ITO films onto polyester rather than those prepared on both Si and glass substrates. The films with resistivity of as low as 4.23 x 10^-4 Ω.cm and average transmittance of ~78% at wavelength of 400~700 nm have been achieved for the films on polyester at room temperature.展开更多
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of ...The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.展开更多
AlxOy films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed...AlxOy films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed films to simulate the high-temperature application environment.Effects of the annealing heating rate on structure and properties of both 500 ℃-annealed and 900 ℃-heated films were investigated systematically.It was found that distinct γ-Al2O3 crystallization was observed in the 900 ℃-heated films only when the annealing heating rates are 15 and 25 ℃/min.The 500 ℃-annealed film possessed the most compact surface morphology in the case of 25 ℃/min.The highest microhardness of both 500 ℃-annealed and 900℃-heated films were obtained when the annealing heating rate was 15 ℃/min.展开更多
The possible application of the film-cooling technique against aero-thermal heating for surfaces of high-speed flying vehicles is discussed. The technique has been widely used in the heat protection of gas turbine bla...The possible application of the film-cooling technique against aero-thermal heating for surfaces of high-speed flying vehicles is discussed. The technique has been widely used in the heat protection of gas turbine blades. It is shown in this paper that, by applying this technique to high-speed flying vehicles, the working principle is fundamentally different. Numerical simulations for two model problems axe performed to support the argument. Besides the heat protection, the appreciable drag reduction is found to be another favorable effect. For the second model problem, i.e., the gas cooling for an optical window on a sphere cone, the hydrodynamic instability of the film is studied by the linear stability analysis to observe possible occurrence of laminar-turbulent transition.展开更多
The effect of heating treatment on the trap level distribution in polyamide 66 film electret is studied by thermally stimulated depolarization current (TSDC) technique. For annealed polyamide 66, there are three tra...The effect of heating treatment on the trap level distribution in polyamide 66 film electret is studied by thermally stimulated depolarization current (TSDC) technique. For annealed polyamide 66, there are three trap levels that respectively originate from space charge trapped in amorphous phase, interphase and crystalline phase. There is one peak that originates from space charge trapped in amorphous phase for quenched one. Using multi-point method to fit the experimental curves, the detrapping current peaks can be separated and the trap depth is obtained. The shallower trap levels trapped in amorphous phase and interphase are obviously close to the deeper trap level trapped in crystalline phase for annealed polyamide 66 as the polarization temperature increases, while the trap level distribution remains unaffected by polarization temperature for quenched one.展开更多
The effect of internal heating source on the film momentum and thermal transport characteristic of thin finite power-law liquids over an accelerating unsteady horizontal stretched interface is studied. Unlike most cla...The effect of internal heating source on the film momentum and thermal transport characteristic of thin finite power-law liquids over an accelerating unsteady horizontal stretched interface is studied. Unlike most classical works in this field, a general surface temperature distribution of the liquid film and the generalized Fourier's law for varying thermal conductivity are taken into consideration. Appropriate similarity transformations are used to convert the strongly nonlinear governing partial differential equations (PDEs) into a boundary value problem with a group of two-point ordinary differential equations (ODEs). The correspondence between the liquid film thickness and the unsteadiness parameter is derived with the BVP4C program in MATLAB. Numerical solutions to the self-similarity ODEs are obtained using the shooting technique combined with a Runge-Kutta iteration program and Newton's scheme. The effects of the involved physical parameters on the fluid's horizontal velocity and temperature distribution are presented and discussed.展开更多
In this paper, a case study of an electrothermal film heating community in Tianjin is carried out, in which the winter load characteristic and electricity use law are analyzed. In this community, every household insta...In this paper, a case study of an electrothermal film heating community in Tianjin is carried out, in which the winter load characteristic and electricity use law are analyzed. In this community, every household installs two watt-hour meters, one of which is only used to measure the electrothermal heating power, so the interference factors are eliminated. The main factors influencing the residents’ power consumption are summarized, and a method for estimating the thermal load of the residents is given. The conclusions can provide important reference to generalize the electric heating technology.展开更多
We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 scc...We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.展开更多
SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorpti...SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.展开更多
The aim of this investigation is to analyze the effectiveness of Lorentz force, viscous dissipation and internal heating on the heat and flow characteristics of a non-Newtonian Casson fluid thin film resting on a stre...The aim of this investigation is to analyze the effectiveness of Lorentz force, viscous dissipation and internal heating on the heat and flow characteristics of a non-Newtonian Casson fluid thin film resting on a stretching surface under the influence of a magnetic field. Employing suitable similarity variables and shooting technique and integrating scheme numerical solutions for velocity and temperature are obtained. The results of this analysis are compared with the published work and are found to be in good agreement. The thickness of the thin film is evaluated and is observed that Lorentz force and the non-Newtonian nature of the fluid have a thinning influence on the film. Velocity and temperature distributions in the thin film are discussed for various flow parameters.展开更多
A new nanometer-scale ferrite thin film with excellent high-frequency characteristics has been developed by the spray-spin-heating-coating method. The effects of the ion synthesis mechanism, chemical stoichiometry, fa...A new nanometer-scale ferrite thin film with excellent high-frequency characteristics has been developed by the spray-spin-heating-coating method. The effects of the ion synthesis mechanism, chemical stoichiometry, fabrication method, and doping content on the magnetic properties and microstructure of the thin films have been analyzed. The films formed between 75℃ and 90℃ by spray-spin-heating-coating methods was discovered with fine grain size of about 21 nm, high saturation magnetization (4πMs) of about 6.5 kGs, coercivity of about 9.8 Oe, as well as initial permeability of about 14.0. These films can be widely used in radio-frequency integrated circuit devices.展开更多
Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysi...Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.展开更多
Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the p...Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn_(0.8)Cd_(0.2)O thin films. When the thin films were pre-heated at 150 ℃, polycrystalline Zn O thin films were obtained. When the thin films were pre-heated at temperatures of 200 ℃ or higher, preferential growth of Zn O nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 e V to 3.08 e V when the pre-heating temperature increased from 150 ℃ to 300 ℃.展开更多
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t...The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.展开更多
The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pro...The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products.Here,we developed an ultra-thin film(CNT@GC)in which the glassy carbon(GC)layer wrapped around and welded carbon nanotubes(CNTs)to form a core-shell network structure,leading to exceptional tensile strength(327.2 MPa)and electrical conductivity(2.87×10^(5) S·m^(−1)).The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2µm after post-acid treatment and high specific SE of 3.49×10^(5) dB·cm^(2)·g^(−1),with comprehensive properties surpassing those of the majority of previous shielding materials.Additionally,the CNT@GC film exhibited Joule heating capability,reaching a surface temperature of 135℃at 3 V with a fast thermal response of about 0.5 s,enabling anti-icing/de-icing functionality.This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability,demonstrating immense potential in wearable devices,defense,and aerospace applications.展开更多
基金supported from the National Natural Science Foundation of China(Nos.52204356,52274342,and 52130408)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ40762 and 2021JJ40731)。
文摘The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.
基金Project supported by the National Natural Science Foundation of China (Grant No.52106099)the Natural Science Foundation of Shandong Province (Grant No.ZR2022YQ57)the Taishan Scholars Program。
文摘Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation.
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
基金supported by National Natural Science Foundation of China (52006242)National Natural Science Foundation of China (52192623)+1 种基金Science Foundation of China University of Petroleum,Beijing (ZX20200126)Science and technology program for strategic cooperation of CNPC–China University of Petroleum (ZLZX2020-05)。
文摘The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.
文摘Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 Pa system, respectively. The dependence of resistivity on deposition parameters, such as deposition rate, target-to-substrate distance (TSD), oxygen flow rate and sputtering time (thickness), has been investigated, together with the structural and the optical properties. It was revealed that all ITO films exhibited lattice expansion. The resistivity of ITO thin films shows significant substrate effect: much lower resistivity and broader process window have been reproducibly achieved for the deposition of ITO films onto polyester rather than those prepared on both Si and glass substrates. The films with resistivity of as low as 4.23 x 10^-4 Ω.cm and average transmittance of ~78% at wavelength of 400~700 nm have been achieved for the films on polyester at room temperature.
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
基金supported by the National Natural Science Foundation of China (Grant Nos.52375172,52075093,and 51905089).
文摘The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.
文摘AlxOy films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed films to simulate the high-temperature application environment.Effects of the annealing heating rate on structure and properties of both 500 ℃-annealed and 900 ℃-heated films were investigated systematically.It was found that distinct γ-Al2O3 crystallization was observed in the 900 ℃-heated films only when the annealing heating rates are 15 and 25 ℃/min.The 500 ℃-annealed film possessed the most compact surface morphology in the case of 25 ℃/min.The highest microhardness of both 500 ℃-annealed and 900℃-heated films were obtained when the annealing heating rate was 15 ℃/min.
基金Project supported by the National Natural Science Foundation of China(Nos.11472189 and11332007)
文摘The possible application of the film-cooling technique against aero-thermal heating for surfaces of high-speed flying vehicles is discussed. The technique has been widely used in the heat protection of gas turbine blades. It is shown in this paper that, by applying this technique to high-speed flying vehicles, the working principle is fundamentally different. Numerical simulations for two model problems axe performed to support the argument. Besides the heat protection, the appreciable drag reduction is found to be another favorable effect. For the second model problem, i.e., the gas cooling for an optical window on a sphere cone, the hydrodynamic instability of the film is studied by the linear stability analysis to observe possible occurrence of laminar-turbulent transition.
基金Project supported by the National Natural Science Foundation of China(Grant No.20974108)the Natural Science Foundation of Anhui Province,China(Grant No.1308085QB40)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.2013HGQC0016 and 2011HGBZ1323)
文摘The effect of heating treatment on the trap level distribution in polyamide 66 film electret is studied by thermally stimulated depolarization current (TSDC) technique. For annealed polyamide 66, there are three trap levels that respectively originate from space charge trapped in amorphous phase, interphase and crystalline phase. There is one peak that originates from space charge trapped in amorphous phase for quenched one. Using multi-point method to fit the experimental curves, the detrapping current peaks can be separated and the trap depth is obtained. The shallower trap levels trapped in amorphous phase and interphase are obviously close to the deeper trap level trapped in crystalline phase for annealed polyamide 66 as the polarization temperature increases, while the trap level distribution remains unaffected by polarization temperature for quenched one.
基金Project supported by the Scientific Research Funds of Huaqiao University(No.14BS310)the National Natural Science Foundation of China(Nos.51276014 and 51476191)
文摘The effect of internal heating source on the film momentum and thermal transport characteristic of thin finite power-law liquids over an accelerating unsteady horizontal stretched interface is studied. Unlike most classical works in this field, a general surface temperature distribution of the liquid film and the generalized Fourier's law for varying thermal conductivity are taken into consideration. Appropriate similarity transformations are used to convert the strongly nonlinear governing partial differential equations (PDEs) into a boundary value problem with a group of two-point ordinary differential equations (ODEs). The correspondence between the liquid film thickness and the unsteadiness parameter is derived with the BVP4C program in MATLAB. Numerical solutions to the self-similarity ODEs are obtained using the shooting technique combined with a Runge-Kutta iteration program and Newton's scheme. The effects of the involved physical parameters on the fluid's horizontal velocity and temperature distribution are presented and discussed.
文摘In this paper, a case study of an electrothermal film heating community in Tianjin is carried out, in which the winter load characteristic and electricity use law are analyzed. In this community, every household installs two watt-hour meters, one of which is only used to measure the electrothermal heating power, so the interference factors are eliminated. The main factors influencing the residents’ power consumption are summarized, and a method for estimating the thermal load of the residents is given. The conclusions can provide important reference to generalize the electric heating technology.
文摘We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.
基金This work was supported by the National Natural Science Foundation of China (No.50172044).
文摘SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.
文摘The aim of this investigation is to analyze the effectiveness of Lorentz force, viscous dissipation and internal heating on the heat and flow characteristics of a non-Newtonian Casson fluid thin film resting on a stretching surface under the influence of a magnetic field. Employing suitable similarity variables and shooting technique and integrating scheme numerical solutions for velocity and temperature are obtained. The results of this analysis are compared with the published work and are found to be in good agreement. The thickness of the thin film is evaluated and is observed that Lorentz force and the non-Newtonian nature of the fluid have a thinning influence on the film. Velocity and temperature distributions in the thin film are discussed for various flow parameters.
基金supported by the National Natural Science Foundation of China under grant No.69671021.
文摘A new nanometer-scale ferrite thin film with excellent high-frequency characteristics has been developed by the spray-spin-heating-coating method. The effects of the ion synthesis mechanism, chemical stoichiometry, fabrication method, and doping content on the magnetic properties and microstructure of the thin films have been analyzed. The films formed between 75℃ and 90℃ by spray-spin-heating-coating methods was discovered with fine grain size of about 21 nm, high saturation magnetization (4πMs) of about 6.5 kGs, coercivity of about 9.8 Oe, as well as initial permeability of about 14.0. These films can be widely used in radio-frequency integrated circuit devices.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant No.91850112)+3 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161401)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Science and Technology Project of State Grid Corporation of China(Grant No.SGSDDK00KJJS1600071)the Fundamental Research Funds for the Central Universities,China(Grant No.14380098)
文摘Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.
基金Funded by the National Natural Science Foundation of China(No.51461135004)the Doctoral Fund of Ministry of Education Priority Development Project(No.20130143130002)+1 种基金the Key Technology Innovation Project of Hubei Province(2013AAA005)the Scientific Leadership training Program of Hubei Province
文摘Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn_(0.8)Cd_(0.2)O thin films. When the thin films were pre-heated at 150 ℃, polycrystalline Zn O thin films were obtained. When the thin films were pre-heated at temperatures of 200 ℃ or higher, preferential growth of Zn O nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 e V to 3.08 e V when the pre-heating temperature increased from 150 ℃ to 300 ℃.
基金Project (SBZDPY-11-17) supported by the Fund on Key Laboratory Project for Hydrodynamic Force, Ministry of Education, China Project (SZD0502-09-0) supported by Key Disciplines of Materials Processing Engineering of Sichuan Province, China
文摘The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.
基金supported by the National Key Research and Development Program of China(No.2020YFA0210702)the National Natural Science Foundation of China(No.51872267)+1 种基金the Natural Science Foundation of Henan Province,China(No.202300410371)Program for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT017).
文摘The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products.Here,we developed an ultra-thin film(CNT@GC)in which the glassy carbon(GC)layer wrapped around and welded carbon nanotubes(CNTs)to form a core-shell network structure,leading to exceptional tensile strength(327.2 MPa)and electrical conductivity(2.87×10^(5) S·m^(−1)).The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2µm after post-acid treatment and high specific SE of 3.49×10^(5) dB·cm^(2)·g^(−1),with comprehensive properties surpassing those of the majority of previous shielding materials.Additionally,the CNT@GC film exhibited Joule heating capability,reaching a surface temperature of 135℃at 3 V with a fast thermal response of about 0.5 s,enabling anti-icing/de-icing functionality.This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability,demonstrating immense potential in wearable devices,defense,and aerospace applications.