期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Device-Free Through-the-Wall Activity Recognition Using Bi-Directional Long Short-Term Memory and WiFi Channel State Information
1
作者 Zi-Yuan Gong Xiang Lu +2 位作者 Yu-Xuan Liu Huan-Huan Hou Rui Zhou 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期357-368,共12页
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev... Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field. 展开更多
关键词 Activity recognition bi-directional long short-term memory(Bi-LSTM) channel state information(CSI) device-free through-the-wall.
下载PDF
PRI modulation recognition and sequence search under small sample prerequisite 被引量:2
2
作者 ZHANG Chunjie LIU Yuchen SI Weijian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期706-713,共8页
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada... Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite. 展开更多
关键词 inter-pulse slide pulse repetition interval(PRI)modulation type bi-directional long short-term memory(BiLSTM)network sequence search
下载PDF
Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features 被引量:1
3
作者 Siva Sankari Subbiah Senthil Kumar Paramasivan +2 位作者 Karmel Arockiasamy Saminathan Senthivel Muthamilselvan Thangavel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3829-3844,共16页
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ... Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others. 展开更多
关键词 bi-directional long short term memory boruta feature selection deep learning machine learning wind speed forecasting
下载PDF
Routing with Cooperative Nodes Using Improved Learning Approaches
4
作者 R.Raja N.Satheesh +1 位作者 J.Britto Dennis C.Raghavendra 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2857-2874,共18页
In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the dep... In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the deployed net-work environment is challenging.This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory(s-LSTM)and Bi-directional Long Short Term Memory(b-LSTM).It is used to hold the routing information and random routing to attain superior performance.The pro-posed model is trained based on the searching and detection mechanisms to com-pute the packet delivery ratio(PDR),end-to-end(E2E)delay,throughput,etc.The anticipated s-LSTM and b-LSTM model intends to ensure Quality of Service(QoS)even in changing network topology.The performance of the proposed b-LSTM and s-LSTM is measured by comparing the significance of the model with various prevailing approaches.Sometimes,the performance is measured with Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)for mea-suring the error rate of the model.The prediction of error rate is made with Learn-ing-based Stochastic Gradient Descent(L-SGD).This gradual gradient descent intends to predict the maximal or minimal error through successive iterations.The simulation is performed in a MATLAB 2020a environment,and the model performance is evaluated with diverse approaches.The anticipated model intends to give superior performance in contrast to prevailing approaches. 展开更多
关键词 Internet of Things(IoT) stacked long short term memory bi-directional long short term memory error rate stochastic gradient descent
下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
5
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
下载PDF
Enhanced Deep Learning for Detecting Suspicious Fall Event in Video Data
6
作者 Madhuri Agrawal Shikha Agrawal 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2653-2667,共15页
Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to d... Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving back-grounds in an indoor environment;it is further proposed to use a deep learning method known as Long Short Term Memory(LSTM)by introducing visual atten-tion-guided mechanism along with a bi-directional LSTM model.This method contributes essential information on the temporal and spatial locations of‘suspi-cious fall’events in learning the video frame in both forward and backward direc-tions.The effective“You only look once V4”(YOLO V4)–a real-time people detection system illustrates the detection of people in videos,followed by a track-ing module to get their trajectories.Convolutional Neural Network(CNN)fea-tures are extracted for each person tracked through bounding boxes.Subsequently,a visual attention-guided Bi-directional LSTM model is proposed for the final suspicious fall event detection.The proposed method is demonstrated using two different datasets to illustrate the efficiency.The proposed method is evaluated by comparing it with other state-of-the-art methods,showing that it achieves 96.9%accuracy,good performance,and robustness.Hence,it is accep-table to monitor and detect suspicious fall events. 展开更多
关键词 Convolutional neural network(CNN) bi-directional long short term memory(bi-directional LSTM) you only look once v4(YOLO-V4) fall detection computer vision
下载PDF
Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction 被引量:1
7
作者 Youdao Wang Yifan Zhao Sri Addepalli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期32-51,共20页
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been... The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance. 展开更多
关键词 Remaining useful life prediction Deep learning Recurrent neural network long short-term memory bi-directional long short-term memory Gated recurrent unit
下载PDF
Covid-19 CT Lung Image Segmentation Using Adaptive Donkey and Smuggler Optimization Algorithm 被引量:1
8
作者 P.Prabu K.Venkatachalam +3 位作者 Ala Saleh Alluhaidan Radwa Marzouk Myriam Hadjouni Sahar A.El_Rahman 《Computers, Materials & Continua》 SCIE EI 2022年第4期1133-1152,共20页
COVID’19 has caused the entire universe to be in existential healthcrisis by spreading globally in the year 2020. The lungs infection is detected inComputed Tomography (CT) images which provide the best way to increa... COVID’19 has caused the entire universe to be in existential healthcrisis by spreading globally in the year 2020. The lungs infection is detected inComputed Tomography (CT) images which provide the best way to increasethe existing healthcare schemes in preventing the deadly virus. Nevertheless,separating the infected areas in CT images faces various issues such as lowintensity difference among normal and infectious tissue and high changes inthe characteristics of the infection. To resolve these issues, a new inf-Net (LungInfection Segmentation Deep Network) is designed for detecting the affectedareas from the CT images automatically. For the worst segmentation results,the Edge-Attention Representation (EAR) is optimized using AdaptiveDonkey and Smuggler Optimization (ADSO). The edges which are identifiedby the ADSO approach is utilized for calculating dissimilarities. An IFCM(Intuitionistic Fuzzy C-Means) clustering approach is applied for computingthe similarity of the EA component among the generated edge maps andGround-Truth (GT) edge maps. Also, a Semi-Supervised Segmentation(SSS) structure is designed using the Randomly Selected Propagation (RP)technique and Inf-Net, which needs only less number of images and unlabelleddata. Semi-Supervised Multi-Class Segmentation (SSMCS) is designed usinga Bi-LSTM (Bi-Directional Long-Short-Term-memory), acquires all theadvantages of the disease segmentation done using Semi Inf-Net and enhancesthe execution of multi-class disease labelling. The newly designed SSMCSapproach is compared with existing U-Net++, MCS, and Semi-Inf-Net.factors such as MAE (Mean Absolute Error), Structure measure, Specificity(Spec), Dice Similarity coefficient, Sensitivity (Sen), and Enhance-AlignmentMeasure are considered for evaluation purpose. 展开更多
关键词 Adaptive donkey and snuggler optimization.bi-directional long short term memory coronavirus disease 2019 randomly selected propagation semi-supervised learning
下载PDF
Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node 被引量:2
9
作者 Nuo Qun Hang Yan +1 位作者 Xi-Peng Qiu Xuan-Jing Huang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第5期1115-1126,共12页
Semi-Markov conditional random fields(Semi-CRFs)have been successfully utilized in many segmentation problems,including Chinese word segmentation(CWS).The advantage of Semi-CRF lies in its inherent ability to exploit ... Semi-Markov conditional random fields(Semi-CRFs)have been successfully utilized in many segmentation problems,including Chinese word segmentation(CWS).The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences.Despite its theoretical advantage,Semi-CRF is still not the best choice for CWS because its computation complexity is quadratic to the sentenced length.In this paper,we propose a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity.Specifically,we first adopt a bi-directional long short-term memory(BiLSTM)on character level to model the context information,and then use simple but effective fusion layer to represent the segment information.Besides,to model arbitrarily long segments within linear time complexity,we also propose a new model named Semi-CRF-Relay.The direct modeling of segments makes the combination with word features easy and the CWS performance can be enhanced merely by adding publicly available pre-trained word embeddings.Experiments on four popular CWS datasets show the effectiveness of our proposed methods.The source codes and pre-trained embeddings of this paper are available on https://github.com/fastnlp/fastNLP/. 展开更多
关键词 Semi-Markov conditional random field(Semi-CRF) Chinese word segmentation bi-directional long short-term memory deep learning
原文传递
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
10
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 Microgrid load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部