Twitter has emerged as a platform that produces new data every day through its users which can be utilized for various purposes.People express their unique ideas and views onmultiple topics thus providing vast knowled...Twitter has emerged as a platform that produces new data every day through its users which can be utilized for various purposes.People express their unique ideas and views onmultiple topics thus providing vast knowledge.Sentiment analysis is critical from the corporate and political perspectives as it can impact decision-making.Since the proliferation of COVID-19,it has become an important challenge to detect the sentiment of COVID-19-related tweets so that people’s opinions can be tracked.The purpose of this research is to detect the sentiment of people regarding this problem with limited data as it can be challenging considering the various textual characteristics that must be analyzed.Hence,this research presents a deep learning-based model that utilizes the positives of random minority oversampling combined with class label analysis to achieve the best results for sentiment analysis.This research specifically focuses on utilizing class label analysis to deal with the multiclass problem by combining the class labels with a similar overall sentiment.This can be particularly helpful when dealing with smaller datasets.Furthermore,our proposed model integrates various preprocessing steps with random minority oversampling and various deep learning algorithms including standard deep learning and bi-directional deep learning algorithms.This research explores several algorithms and their impact on sentiment analysis tasks and concludes that bidirectional neural networks do not provide any advantage over standard neural networks as standard Neural Networks provide slightly better results than their bidirectional counterparts.The experimental results validate that our model offers excellent results with a validation accuracy of 92.5%and an F1 measure of 0.92.展开更多
In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral ...In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.展开更多
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0105).
文摘Twitter has emerged as a platform that produces new data every day through its users which can be utilized for various purposes.People express their unique ideas and views onmultiple topics thus providing vast knowledge.Sentiment analysis is critical from the corporate and political perspectives as it can impact decision-making.Since the proliferation of COVID-19,it has become an important challenge to detect the sentiment of COVID-19-related tweets so that people’s opinions can be tracked.The purpose of this research is to detect the sentiment of people regarding this problem with limited data as it can be challenging considering the various textual characteristics that must be analyzed.Hence,this research presents a deep learning-based model that utilizes the positives of random minority oversampling combined with class label analysis to achieve the best results for sentiment analysis.This research specifically focuses on utilizing class label analysis to deal with the multiclass problem by combining the class labels with a similar overall sentiment.This can be particularly helpful when dealing with smaller datasets.Furthermore,our proposed model integrates various preprocessing steps with random minority oversampling and various deep learning algorithms including standard deep learning and bi-directional deep learning algorithms.This research explores several algorithms and their impact on sentiment analysis tasks and concludes that bidirectional neural networks do not provide any advantage over standard neural networks as standard Neural Networks provide slightly better results than their bidirectional counterparts.The experimental results validate that our model offers excellent results with a validation accuracy of 92.5%and an F1 measure of 0.92.
基金Supported by the National Natural Science Foundation of China (60661003)the Research Project Department of Education of Jiangxi Province (GJJ10566)
文摘In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.