Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
Reversible protonic ceramic electrochemical cells(R-PCECs)are ideal,high-effi ciency devices that are environmentally friendly and have a modular design.This paper studies BaFe_(0.6)Zr_(0.1)Y_(0.3)O_(3−δ)(BFZY3)as a ...Reversible protonic ceramic electrochemical cells(R-PCECs)are ideal,high-effi ciency devices that are environmentally friendly and have a modular design.This paper studies BaFe_(0.6)Zr_(0.1)Y_(0.3)O_(3−δ)(BFZY3)as a cobalt-free perovskite oxygen electrode for high-performance R-PCECs where Y ions doping can increase the concentration of oxygen vacancies with a remarkable increase in catalytic performance.The cell with confi guration of Ni-BZCYYb/BZCYYb/BFZY3 demonstrated promising performance in dual modes of fuel cells(FCs)and electrolysis cells(ECs)at 650℃with low polarization resistance of 0.13Ωcm^(2),peak power density of 546.59 mW/cm^(2)in FC mode,and current density of−1.03 A/cm^(2)at 1.3 V in EC mode.The alternative operation between FC and EC modes for up to eight cycles with a total of 80 h suggests that the cell with BFZY3 is exceptionally stable and reversible over the long term.The results indicated that BFZY3 has considerable potential as an air electrode material for R-PCECs,permitting effi cient oxygen reduction and water splitting.展开更多
The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and...The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2.展开更多
A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel...A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.展开更多
The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba...The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.展开更多
The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggis...The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices.展开更多
High quality Sb-doped SnO2 electrode, with high oxygen evolution potential of 3.0 V, was successfully synthesized on the Ti substrates by in situ hydrothermal synthesis method.
Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron micro...Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy(SEM),Raman spectroscopy,and X-ray Photoelectron Spectroscopy(XPS).It was found from the conducted electrochemical measurements that the functionalized fibers showed a 132.8% increase in specific capacitance compared to non-functionalized fibers.Dye-adsorption test and the obtained Randles-Sevcik plot demonstrated that the oxygen plasma functionalized fibers exhibited increased surface area.It was further established by Brunauer-Emmett-Teller(BET)measurements that the surface area of the CNT fibers was increased from 168.22 m^2/g to 208.01 m^2/g after plasma functionalization.The pore size distribution of the fibers was also altered by this processing.The improved electrochemical data was attributed to enhanced wettability,increased surface area,and the presence of oxygen functional groups,which promoted the capacitance of the fibers.Fiber supercapacitors were fabricated from the oxygen plasma functionalized CNT fiber electrodes using different electrolyte systems.The devices with functionalized electrodes exhibited excellent cyclic stability(93.2% after 4000 cycles),flexibility,bendability,and good energy densities.At 0.5 m A/cm^2,the EMIMBF4 device revealed a specific capacitance,which is 27% and 65%greater than the specific capacitances of devices using EMIMTFSI and H2SO4 electrolytes,respectively.The practiced in this work plasma surface processing can be employed in other applications where fibers,yarns,ribbons,and sheets need to be chemically modified.展开更多
Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water ele...Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices.展开更多
The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can...The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference elec- trode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2 M- 5 M to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.展开更多
To improve both oxygen evolution efficiency and stability at high temperatures, Mn, Mn+Mo, Mn+Mo+V, and Mn+Fe+V oxide electrodes were prepared on a Ti substrate, with an intermediate layer of IrO_2, by an anodic depos...To improve both oxygen evolution efficiency and stability at high temperatures, Mn, Mn+Mo, Mn+Mo+V, and Mn+Fe+V oxide electrodes were prepared on a Ti substrate, with an intermediate layer of IrO_2, by an anodic deposition method. The crystal structure, surface morphology, pore size distribution, specific surface area, and voltammetric charge were then characterized for each electrode. The results demonstrated that for Mn-O electrodes, the preferential orientation of the(100) crystal plane and the mesopore structure played negative roles in the oxygen evolution reaction. On the basis of the electrocatalytic properties of MnO2-based electrodes in seawater, the outer surface voltammetric charge at a scan rate of 500 mV·s-1 was shown to effectively indicate whether oxygen evolution reactions were preferred over chlorine evolution reactions. The Mn-O electrode exhibited oxygen evolution efficiency of only 47.27%, whereas the Mn+Mo, Mn+Mo+V and Mn+Fe+V oxide electrodes displayed oxygen evolution efficiency of nearly 100%. This means that adding Mo, V, and Fe elements to the electrode can improve its crystal structure and morphology as well as further enhancing its oxygen evolution efficiency.展开更多
The electrode ionomer plays a crucial role in the catalyst layer(CL) of a proton-exchange membrane fuel cell(PEMFC) and is closely associated with the proton conduction and gas transport properties,structural stabilit...The electrode ionomer plays a crucial role in the catalyst layer(CL) of a proton-exchange membrane fuel cell(PEMFC) and is closely associated with the proton conduction and gas transport properties,structural stability,and water management capability.In this review,we discuss the CL structural characteristics and highlight the latest advancements in ionomer material research.Additionally,we comprehensively introduce the design concepts and exceptional performances of porous electrode ionomers,elaborate on their structural properties and functions within the fuel cell CL,and investigate their effect on the CL microstructure and performance.Finally,we present a prospective evaluation of the developments in the electrode ionomer for fabricating CL,offering valuable insights for designing and synthesizing more efficient electrode ionomer materials.By addressing these facets,this review contributes to a comprehensive understanding of the role and potential of electrode ionomers for enhancing PEMFC performance.展开更多
In recent years, as one of the most promising chemical power sources for future society, lithium–oxygen (Li–O2) battery receives great attention due to its extremely high theoretical energy density of 3505 Wh kg^(–...In recent years, as one of the most promising chemical power sources for future society, lithium–oxygen (Li–O2) battery receives great attention due to its extremely high theoretical energy density of 3505 Wh kg^(–1)[1–4]. In practice, large polarization and consequent low energy efficiency currently still hinder the application of Li–O2batteries, which mainly results from the sluggish electrochemical reaction kinetics of oxygen diffusion electrodes in aprotic electrolytes [5]. On one hand, oxygen reduction reaction (ORR)in aprotic electrolytes is intrinsically sluggish due to the difficult charge transfer, the low solubility of oxygen.展开更多
Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this...Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this review.Various fabrication methods of these oxides are introduced in detail,and their advantages and disadvantages are analyzed.Different preparation methods adopted have great influence on the morphologies and physicochemical properties of perovskite-type oxides.As a bifunctional electrocatalyst,perovskite-type oxides are widely used in rechargeable metal-air batteries.The relationship between the preparation methods and the performances of oxygen/air electrodes are summarized.This work is concentrated on the structural stability,the phase compositions,and catalytic performance of perovskite-type oxides in oxygen/air electrodes.The main problems existing in the practical application of perovskite-type oxides as bifunctional electrocatalysts are pointed out and possible research directions in the future are recommended.展开更多
Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature ...Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature of TMOs and the confined growth of nanostructures on the limited surfaces of electrode substrates result in the low areal capacities of TMO nanoarray electrodes,which seriously deteriorates the intrinsically high energy densities of Li-O2 batteries.Herein,we propose a hybrid nanoarray architecture design that integrates the high electronic conductivity of carbon nanoflakes(CNFs)and the high catalytic activity of Co3 O4 nanosheets on carbon cloth(CC).Due to the synergistic effect of two differently featured components,the hybrid nanoarrays(Co3 O4-CNF@CC)achieve a high reversible capacity of3.14 mA h cm-2 that cannot be achieved by only single components.Further,CNFs grown on CC induce the three-dimensionally distributed growth of ultrafine Co3 O4 nanosheets to enable the efficient utilization of catalysts.Thus,with the high catalytic efficiency,hybrid Co3 O4-CNF@CC also achieves a more prolonged cycling life than pristine TMO nanoarrays.The present work provides a new strategy for improving the performance of nanoarray oxygen electrodes via the hybrid architecture design that integrates the intrinsic properties of each component and induces the three-dimensional distribution of catalysts.展开更多
Oxygen reduction on Teflon-bonded carbon gas diffusion electrode without cataly st in 6 mol/L KOH solution was investigated with acimpedance spectroscopy and o ther electrochemical techniques. The kinetic parameters w...Oxygen reduction on Teflon-bonded carbon gas diffusion electrode without cataly st in 6 mol/L KOH solution was investigated with acimpedance spectroscopy and o ther electrochemical techniques. The kinetic parameters were measured with an ex change current density of J0=3.44×10-9 and a Tafel slope of 46 mV/ dec in low overpotential range (-0.05-0.14 V vs SCE),which are compara ble with those reported on carbon supported platinum electrode. The reaction mec hanism of OR and the active effect of carbon black were examined.展开更多
Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode...Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is –0.084 V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode, the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O ?2 radicals and acceletes the dismutation of O 2?, which contributes to the catalytic effect of manganese oxide for OR reaction.展开更多
Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes.Herein,carbon nanofiber-supported V_(2)O_(3) with enriche...Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes.Herein,carbon nanofiber-supported V_(2)O_(3) with enriched oxygen vacancies(OV-V_(2)O_(3)@CNF)was fabricated using the facile electrospinning method,followed by thermal reduction.Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers,the free-standing OV-V_(2)O_(3)@CNF allows for V_(2)O_(3) nanosheets to grow vertically on one-dimensional(1D)carbon nanofibers,enabling abundant active sites,shortened ion diffusion pathway,continuous electron transport,and robust structural stability.Meanwhile,density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier.Consequently,the OV-V_(2)O_(3)@CNF anode delivers a large reversible capacity of 812 mAh g^(-1) at 0.1 A g^(-1),superior rate capability(405 mAh g^(-1) at 5 A g^(-1)),and long cycle life(378 mAh g^(-1) at 5 A g^(-1) after 1000 cycles).Moreover,an all-vanadium full battery(V2O5//OV-V_(2)O_(3)@CNF)was assembled using an OV-V_(2)O_(3)@CNF anode and a V2O5 cathode,which outputs a working voltage of 2.5 V with high energy density and power density,suggesting promising practical application.This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.展开更多
Cyclic voltammetry was used to investigate the reaction of erythromycin (EM) with dissolved oxygen on gold nanopartiele-modified electrodes prepared via electrodeposition. A well-defined reduction peak at -0.420 V a...Cyclic voltammetry was used to investigate the reaction of erythromycin (EM) with dissolved oxygen on gold nanopartiele-modified electrodes prepared via electrodeposition. A well-defined reduction peak at -0.420 V and a reoxidation peak at -0.055 V were observed. With the addition of EM into the NaOH solution containing dissolved oxygen, the oxidation peak at -0.055 V was still indiscernible. However, a new oxidation peak at 0.200 V appeared, which suggests the interaction between EM and dissolved oxygen. Therefore, this method can be used for the analysis of EM in tablets. The present method is simple, reproducible, and does not require complex analytical instruments.展开更多
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金support from the National Key Research&Development Project(2022YFB4002201)National Natural Science Foundation of China(Nos.52172199,52072135,52002121)+1 种基金Hubei Province(2023BAB115)Jiangsu Province(BZ2022027).
文摘Reversible protonic ceramic electrochemical cells(R-PCECs)are ideal,high-effi ciency devices that are environmentally friendly and have a modular design.This paper studies BaFe_(0.6)Zr_(0.1)Y_(0.3)O_(3−δ)(BFZY3)as a cobalt-free perovskite oxygen electrode for high-performance R-PCECs where Y ions doping can increase the concentration of oxygen vacancies with a remarkable increase in catalytic performance.The cell with confi guration of Ni-BZCYYb/BZCYYb/BFZY3 demonstrated promising performance in dual modes of fuel cells(FCs)and electrolysis cells(ECs)at 650℃with low polarization resistance of 0.13Ωcm^(2),peak power density of 546.59 mW/cm^(2)in FC mode,and current density of−1.03 A/cm^(2)at 1.3 V in EC mode.The alternative operation between FC and EC modes for up to eight cycles with a total of 80 h suggests that the cell with BFZY3 is exceptionally stable and reversible over the long term.The results indicated that BFZY3 has considerable potential as an air electrode material for R-PCECs,permitting effi cient oxygen reduction and water splitting.
基金Projects (51272221,51072173,21203161) supported by the National Natural Science Foundation of ChinaProject (10CY005) supported by Industrial Project of Colleges and Universities of Hunan Province,China
文摘The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2.
基金National Natural Science Foundation of China,Grant/Award Numbers:22075203,22279079,21905179Guangdong Science and Technology Department Program,Grant/Award Number:2021QN02L252+1 种基金Shenzhen Science and Technology Department Program,Grant/Award Numbers:20220810133521001,20220809165014001Natural Science Foundation of SZU,Grant/Award Numbers:000002111605,000002112215。
文摘A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.
基金National Natural Science Foundation of China,Grant/Award Numbers:11974303,12074332Qinglan Project of Jiangsu Province,Grant/Award Number:137050317the Interdisciplinary Research Project of Chemistry Discipline,Grant/Award Number:yzuxk202014 and High‐End Talent Program of Yangzhou University,Grant/Award Number:137080051。
文摘The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.
基金supported by the start-up fund from Kunming University of Science and Technology,the National Natural Science Foundation of China (Grants 52102046,51872293,52130209,52072375)Liaoning Revitalization Talents Program (XLYC2002037)Basic Research Project of Natural Science Foundation of Shandong Province,China (ZR2019ZD49).
文摘The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices.
基金supported by the National Natural Science Foundation of China(No.20607015)Program for Young Excellent Talents in Tongji University(No.2006KJ057).
文摘High quality Sb-doped SnO2 electrode, with high oxygen evolution potential of 3.0 V, was successfully synthesized on the Ti substrates by in situ hydrothermal synthesis method.
基金funded by a NASA Grant NNX13AF46Apartly by the National Institute for Occupational Safety and Health through the UC Pilot Research Project Training Program ERC Grant #T42OH008432
文摘Dry-spun Carbon Nanotube(CNT)fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy(SEM),Raman spectroscopy,and X-ray Photoelectron Spectroscopy(XPS).It was found from the conducted electrochemical measurements that the functionalized fibers showed a 132.8% increase in specific capacitance compared to non-functionalized fibers.Dye-adsorption test and the obtained Randles-Sevcik plot demonstrated that the oxygen plasma functionalized fibers exhibited increased surface area.It was further established by Brunauer-Emmett-Teller(BET)measurements that the surface area of the CNT fibers was increased from 168.22 m^2/g to 208.01 m^2/g after plasma functionalization.The pore size distribution of the fibers was also altered by this processing.The improved electrochemical data was attributed to enhanced wettability,increased surface area,and the presence of oxygen functional groups,which promoted the capacitance of the fibers.Fiber supercapacitors were fabricated from the oxygen plasma functionalized CNT fiber electrodes using different electrolyte systems.The devices with functionalized electrodes exhibited excellent cyclic stability(93.2% after 4000 cycles),flexibility,bendability,and good energy densities.At 0.5 m A/cm^2,the EMIMBF4 device revealed a specific capacitance,which is 27% and 65%greater than the specific capacitances of devices using EMIMTFSI and H2SO4 electrolytes,respectively.The practiced in this work plasma surface processing can be employed in other applications where fibers,yarns,ribbons,and sheets need to be chemically modified.
文摘Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices.
文摘The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference elec- trode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2 M- 5 M to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.
基金Funded by National Natural Science Foundation of China(No.51301070)Scientific and Technological Project of Henan Province(No.182102210068)
文摘To improve both oxygen evolution efficiency and stability at high temperatures, Mn, Mn+Mo, Mn+Mo+V, and Mn+Fe+V oxide electrodes were prepared on a Ti substrate, with an intermediate layer of IrO_2, by an anodic deposition method. The crystal structure, surface morphology, pore size distribution, specific surface area, and voltammetric charge were then characterized for each electrode. The results demonstrated that for Mn-O electrodes, the preferential orientation of the(100) crystal plane and the mesopore structure played negative roles in the oxygen evolution reaction. On the basis of the electrocatalytic properties of MnO2-based electrodes in seawater, the outer surface voltammetric charge at a scan rate of 500 mV·s-1 was shown to effectively indicate whether oxygen evolution reactions were preferred over chlorine evolution reactions. The Mn-O electrode exhibited oxygen evolution efficiency of only 47.27%, whereas the Mn+Mo, Mn+Mo+V and Mn+Fe+V oxide electrodes displayed oxygen evolution efficiency of nearly 100%. This means that adding Mo, V, and Fe elements to the electrode can improve its crystal structure and morphology as well as further enhancing its oxygen evolution efficiency.
基金supported by the National Natu-ral Science Foundation of China(Nos.21625102,21971017,and 22102008)National Key Research and Development Program of China(No.2020YFB1506300)Postdoctoral Fund of China(Nos.2020T130055 and 2020M670143).
文摘The electrode ionomer plays a crucial role in the catalyst layer(CL) of a proton-exchange membrane fuel cell(PEMFC) and is closely associated with the proton conduction and gas transport properties,structural stability,and water management capability.In this review,we discuss the CL structural characteristics and highlight the latest advancements in ionomer material research.Additionally,we comprehensively introduce the design concepts and exceptional performances of porous electrode ionomers,elaborate on their structural properties and functions within the fuel cell CL,and investigate their effect on the CL microstructure and performance.Finally,we present a prospective evaluation of the developments in the electrode ionomer for fabricating CL,offering valuable insights for designing and synthesizing more efficient electrode ionomer materials.By addressing these facets,this review contributes to a comprehensive understanding of the role and potential of electrode ionomers for enhancing PEMFC performance.
基金supported by grants from the National Natural Science Foundation of China (Nos. 21673169, 51672205, 51972257)the National Key Research Program of China (No. 2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities (WUT: No. 2019IB003)。
文摘In recent years, as one of the most promising chemical power sources for future society, lithium–oxygen (Li–O2) battery receives great attention due to its extremely high theoretical energy density of 3505 Wh kg^(–1)[1–4]. In practice, large polarization and consequent low energy efficiency currently still hinder the application of Li–O2batteries, which mainly results from the sluggish electrochemical reaction kinetics of oxygen diffusion electrodes in aprotic electrolytes [5]. On one hand, oxygen reduction reaction (ORR)in aprotic electrolytes is intrinsically sluggish due to the difficult charge transfer, the low solubility of oxygen.
基金Projects(51504212,21573184,51703061)supported by the National Natural Science Foundation of ChinaProject(2018J01521)supported by the Natural Science Foundation of Fujian Province,ChinaProject(fma2017202)supported by the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications(Xiamen University of Technology),China
文摘Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this review.Various fabrication methods of these oxides are introduced in detail,and their advantages and disadvantages are analyzed.Different preparation methods adopted have great influence on the morphologies and physicochemical properties of perovskite-type oxides.As a bifunctional electrocatalyst,perovskite-type oxides are widely used in rechargeable metal-air batteries.The relationship between the preparation methods and the performances of oxygen/air electrodes are summarized.This work is concentrated on the structural stability,the phase compositions,and catalytic performance of perovskite-type oxides in oxygen/air electrodes.The main problems existing in the practical application of perovskite-type oxides as bifunctional electrocatalysts are pointed out and possible research directions in the future are recommended.
基金supported by grants from the National Natural Science Foundation of China(Nos.21673169,51672205,51972257)the National Key Research Program of China(No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(WUT:No.2019IB003)。
文摘Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature of TMOs and the confined growth of nanostructures on the limited surfaces of electrode substrates result in the low areal capacities of TMO nanoarray electrodes,which seriously deteriorates the intrinsically high energy densities of Li-O2 batteries.Herein,we propose a hybrid nanoarray architecture design that integrates the high electronic conductivity of carbon nanoflakes(CNFs)and the high catalytic activity of Co3 O4 nanosheets on carbon cloth(CC).Due to the synergistic effect of two differently featured components,the hybrid nanoarrays(Co3 O4-CNF@CC)achieve a high reversible capacity of3.14 mA h cm-2 that cannot be achieved by only single components.Further,CNFs grown on CC induce the three-dimensionally distributed growth of ultrafine Co3 O4 nanosheets to enable the efficient utilization of catalysts.Thus,with the high catalytic efficiency,hybrid Co3 O4-CNF@CC also achieves a more prolonged cycling life than pristine TMO nanoarrays.The present work provides a new strategy for improving the performance of nanoarray oxygen electrodes via the hybrid architecture design that integrates the intrinsic properties of each component and induces the three-dimensional distribution of catalysts.
文摘Oxygen reduction on Teflon-bonded carbon gas diffusion electrode without cataly st in 6 mol/L KOH solution was investigated with acimpedance spectroscopy and o ther electrochemical techniques. The kinetic parameters were measured with an ex change current density of J0=3.44×10-9 and a Tafel slope of 46 mV/ dec in low overpotential range (-0.05-0.14 V vs SCE),which are compara ble with those reported on carbon supported platinum electrode. The reaction mec hanism of OR and the active effect of carbon black were examined.
基金Project(1766-394201123) supported by the Natural Science Foundation of Hunan Province, China
文摘Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is –0.084 V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode, the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O ?2 radicals and acceletes the dismutation of O 2?, which contributes to the catalytic effect of manganese oxide for OR reaction.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.52173091,51973235)the Hubei Provincial Natural Science Foundation of China(Grant No.2021CFA022)Fundamental Research Funds for Central Universities(Grant No.CPT22023).
文摘Synergistic regulation of hierarchical nanostructures and defect engineering is effective in accelerating electron and ion transport for metal oxide electrodes.Herein,carbon nanofiber-supported V_(2)O_(3) with enriched oxygen vacancies(OV-V_(2)O_(3)@CNF)was fabricated using the facile electrospinning method,followed by thermal reduction.Differing from the traditional particles embedded within carbon nanofibers or irregularly distributed between carbon nanofibers,the free-standing OV-V_(2)O_(3)@CNF allows for V_(2)O_(3) nanosheets to grow vertically on one-dimensional(1D)carbon nanofibers,enabling abundant active sites,shortened ion diffusion pathway,continuous electron transport,and robust structural stability.Meanwhile,density functional theory calculations confirmed that the oxygen vacancies can promote intrinsic electron conductivity and reduce ion diffusion energy barrier.Consequently,the OV-V_(2)O_(3)@CNF anode delivers a large reversible capacity of 812 mAh g^(-1) at 0.1 A g^(-1),superior rate capability(405 mAh g^(-1) at 5 A g^(-1)),and long cycle life(378 mAh g^(-1) at 5 A g^(-1) after 1000 cycles).Moreover,an all-vanadium full battery(V2O5//OV-V_(2)O_(3)@CNF)was assembled using an OV-V_(2)O_(3)@CNF anode and a V2O5 cathode,which outputs a working voltage of 2.5 V with high energy density and power density,suggesting promising practical application.This work offers fresh perspectives on constructing hierarchical 1D nanofiber electrodes by combining defect engineering and electrospinning technology.
基金Project(2005037207) supported by Postdoctoral Science Foundation of China
文摘Cyclic voltammetry was used to investigate the reaction of erythromycin (EM) with dissolved oxygen on gold nanopartiele-modified electrodes prepared via electrodeposition. A well-defined reduction peak at -0.420 V and a reoxidation peak at -0.055 V were observed. With the addition of EM into the NaOH solution containing dissolved oxygen, the oxidation peak at -0.055 V was still indiscernible. However, a new oxidation peak at 0.200 V appeared, which suggests the interaction between EM and dissolved oxygen. Therefore, this method can be used for the analysis of EM in tablets. The present method is simple, reproducible, and does not require complex analytical instruments.