We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electroma...We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electromagnetic wave to its orthogonal direction with high efficiency and large bandwidth in the infrared or microwave regions.To make sure of the mechanism of polarization conversion, the current and electric-field distributions at different resonant frequencies are analyzed. It is found that the cross-polarized transmission is due to the near-field coupling between hole pairs in neighboring metal films. Finally, a prototype of the proposed converter is fabricated and measured in the microwave region. Good agreement between the experimental and simulated results is obtained.展开更多
A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling ...A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling occurs at the designated position and forms a convolution.In this paper,a forming apparatus is designed and developed to produce both discontinuous and continuous bellows of 304 stainless steel,and their characteristics are discussed respectively.Furthermore,the influences of process parameters and geometric parameters on the final convolution profile are deeply studied based on FEM analysis.The results suggest that the steel bellows fabricated by the presented buckling-induced forming method have a uniform shape and no obvious reduction of wall thickness.Meanwhile,the forming force required in the process is quite small.展开更多
Oxycodone hydrochloride is a semi-synthetic opioid agonist that provides very effective relief for moderate to severe pain in cancer and post-operative patients. Controlled release oxycodone formulations have been stu...Oxycodone hydrochloride is a semi-synthetic opioid agonist that provides very effective relief for moderate to severe pain in cancer and post-operative patients. Controlled release oxycodone formulations have been studied to enhance the therapeutic effect by providing constant release over the whole dosing interval and improve patient’s convenience by reducing the frequency of administration as well.展开更多
Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heati...Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future.展开更多
In this study,the pressure compensation mechanism of a reducer bellows is analyzed.This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilit...In this study,the pressure compensation mechanism of a reducer bellows is analyzed.This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilities.Here,its axial stiffness is studied through a multi-fold approach based on theory,simulations and experiments.The results indicate that the mechanical strength of the reducer bellows,together with the oil volume and temperature are the main factors influencing its performances.In particular,the wall thickness,wave number,middle distance,and wave height are the most influential parameters.For a certain type of reducer bellows,the compensation capacity attains a maximum when the wave number ratio is between 6:6 and 8:4,the wall thickness is 0.3 mm,and the wave height is between 4–5 mm and 5–6 mm.Moreover,the maximum allowable ambient pres-sure of the optimized reducer bellows can reach 62.6 MPa without failure,and the maximum working water depth is 6284 m.展开更多
Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of...Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.展开更多
文摘We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electromagnetic wave to its orthogonal direction with high efficiency and large bandwidth in the infrared or microwave regions.To make sure of the mechanism of polarization conversion, the current and electric-field distributions at different resonant frequencies are analyzed. It is found that the cross-polarized transmission is due to the near-field coupling between hole pairs in neighboring metal films. Finally, a prototype of the proposed converter is fabricated and measured in the microwave region. Good agreement between the experimental and simulated results is obtained.
基金National Natural Science Foundation of China(Grant No.52175349)Aeronautical Science Foundation of China(Grant No.20200009057004)。
文摘A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling occurs at the designated position and forms a convolution.In this paper,a forming apparatus is designed and developed to produce both discontinuous and continuous bellows of 304 stainless steel,and their characteristics are discussed respectively.Furthermore,the influences of process parameters and geometric parameters on the final convolution profile are deeply studied based on FEM analysis.The results suggest that the steel bellows fabricated by the presented buckling-induced forming method have a uniform shape and no obvious reduction of wall thickness.Meanwhile,the forming force required in the process is quite small.
文摘Oxycodone hydrochloride is a semi-synthetic opioid agonist that provides very effective relief for moderate to severe pain in cancer and post-operative patients. Controlled release oxycodone formulations have been studied to enhance the therapeutic effect by providing constant release over the whole dosing interval and improve patient’s convenience by reducing the frequency of administration as well.
基金the National Natural Science Foundation of China(No.11772030)the Aeronautical Science Foundation of China(No.2018ZC51030)+1 种基金the Natural Science Foundation of Zhejiang Province of China(No.Y21A020002)the Opening Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology(No.GZ19117)。
文摘Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future.
基金Key Laboratory of Petroleum and Natural Gas Equipment of Ministry of Education.
文摘In this study,the pressure compensation mechanism of a reducer bellows is analyzed.This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilities.Here,its axial stiffness is studied through a multi-fold approach based on theory,simulations and experiments.The results indicate that the mechanical strength of the reducer bellows,together with the oil volume and temperature are the main factors influencing its performances.In particular,the wall thickness,wave number,middle distance,and wave height are the most influential parameters.For a certain type of reducer bellows,the compensation capacity attains a maximum when the wave number ratio is between 6:6 and 8:4,the wall thickness is 0.3 mm,and the wave height is between 4–5 mm and 5–6 mm.Moreover,the maximum allowable ambient pres-sure of the optimized reducer bellows can reach 62.6 MPa without failure,and the maximum working water depth is 6284 m.
基金supported by the National Natural Science Foundation of China(No.51279122)the Graduate Innovation Foundation of Taiyuan University of Technology(No.2013A019)
文摘Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting.