期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
1
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Multi-object optimization design for differential and grading toothed roll crusher using a genetic algorithm 被引量:12
2
作者 ZHAO La-la WANG Zhong-bin ZANG Feng 《Journal of China University of Mining and Technology》 EI 2008年第2期316-320,共5页
Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for th... Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved. 展开更多
关键词 differential and grading toothed roll crusher crank-rocker mechanism genetic algorithm multi-object optimization
下载PDF
Algorithm for solving the bi-level decision making problem with continuous variables in the upper level based on genetic algorithm 被引量:2
3
作者 肖剑 《Journal of Chongqing University》 CAS 2005年第1期59-62,共4页
Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algor... Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples. 展开更多
关键词 bi-level decision making Monte Carlo simulated annealing genetic algorithms
下载PDF
Optimization of the bioconversion of glycerol to ethanol using Escherichia coli by implementing a bi-level programming framework for proposing gene transcription control strategies based on genetic algorithms
4
作者 Carol Milena Barreto-Rodriguez Jessica Paola Ramirez-Angulo +2 位作者 Jorge Mario Gomez-Ramirez Luke Achenie Andres Fernando Gonzalez-Barrios 《Advances in Bioscience and Biotechnology》 2012年第4期336-343,共8页
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approach... In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113. 展开更多
关键词 bi-level Optimization Escherichia coli Metabolic Flux Analysis genetic algorithm
下载PDF
A hybrid differential evolution algorithm for meta-task scheduling in grids
5
作者 康钦马 Jiang Changiun +1 位作者 He Hong Huang Qiangsheng 《High Technology Letters》 EI CAS 2009年第3期261-266,共6页
Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or n... Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems. 展开更多
关键词 Hybrid differential evolution grid computing task scheduling genetic algorithm
下载PDF
Multi-strategy Differential Evolution Algorithm for QoS Multicast Routing
6
作者 Xi Li Yang Zhao 《International Journal of Technology Management》 2013年第8期90-92,共3页
This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the di... This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability. 展开更多
关键词 QOS multi-strategy difference differential evolution genetic algorithm
下载PDF
Bi-level programming model and algorithm for optimizing headway of public transit line
7
作者 张健 李文权 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期471-474,共4页
Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests o... Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests of bus companies and passengers in mind, the upper-level model's objective is to minimize the total cost, which is affected by frequency settings, both in time and economy in the transit system. The lower-level model is a transit assignment model used to describe the assignment of passengers' trips to the network based on the optimal bus headway. In order to solve the proposed model, a hybrid genetic algorithm, namely the genetic algorithm and the simulated annealing algorithm (GA-SA), is designed. Finally, the model and the algorithm are tested against the transit data, by taking some of the bus lines of Changzhou city as an example. Results indicate that the proposed model allows supply and demand to be linked, which is reasonable, and the solving algorithm is effective. 展开更多
关键词 HEADWAY bi-level model transit assignment hybrid genetic algorithm
下载PDF
Multi-objective Optimization of Differential Steering System of Electric Vehicle with Motorized Wheels
8
作者 赵万忠 王春燕 +2 位作者 段婷婷 叶嘉冀 周协 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期99-103,共5页
A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,... A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility. 展开更多
关键词 electric vehicle with motorized wheels differential steering multi-island genetic algorithm MULTI-OBJECTIVE
下载PDF
Hybrid Global Optimization Algorithm for Feature Selection 被引量:1
9
作者 Ahmad Taher Azar Zafar Iqbal Khan +1 位作者 Syed Umar Amin Khaled M.Fouad 《Computers, Materials & Continua》 SCIE EI 2023年第1期2021-2037,共17页
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing ... This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features. 展开更多
关键词 Particle swarm optimization(PSO) time-variant acceleration coefficients(TVAC) genetic algorithms differential evolution feature selection medical data
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
10
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems 被引量:2
11
作者 Xiao-lei DONG Sui-qing LIU +2 位作者 Tao TAO Shu-ping LI Kun-lun XIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第9期674-686,共13页
The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performari... The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performarice comparison between the new emerged DE algorithm and the most popular algorithm-the genetic algorithm (GA). A total of six benchmark WDS case studies were used with the number of decision variables ranging from 8 to 454. A preliminary sensitivity analysis was performed to select the most effective parameter values for both algorithms to enable the fair comparison. It is observed from the results that the DE algorithm consistently outperforms the GA in terms of both efficiency and the solution quality for each case study. Additionally, the DE algorithm was also compared with the previously published optimization algorithms based on the results for those six case studies, indicating that the DE exhibits comparable performance with other algorithms. It can be concluded that the DE is a newly promising optimization algorithm in the design of WDSs. 展开更多
关键词 differential evolution (DE) genetic algorithms (GAs) OPTIMIZATION Water distribution systems (WDSs)
原文传递
Differential multiuser detection using a novel genetic algorithm for ultra-wideband systems in lognormal fading channel 被引量:1
12
作者 Zheng-min KONG Liang ZHONG +1 位作者 Guang-xi ZHU Li DING 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第9期754-765,共12页
We employ a multiuser detection (MUD) method using a novel genetic algorithm (GA) based on complementary error function mutation (CEFM) and a differential algorithm (DA) for ultra-wideband (UWB) systems.The proposed M... We employ a multiuser detection (MUD) method using a novel genetic algorithm (GA) based on complementary error function mutation (CEFM) and a differential algorithm (DA) for ultra-wideband (UWB) systems.The proposed MUD method is termed CEFM-GA DA for short.We describe the scheme of CEFM-GA DA,analyze its algorithm,and compare its computational complexity with other MUDs.Simulation results show that a significant performance gain can be achieved by employing the proposed CEFM-GA DA,compared with successive interference cancellation (SIC),parallel interference cancellation (PIC),conventional GA,and CEFM-GA without DA,for UWB systems in lognormal fading channel.Moreover,CEFM-GA DA not only reduces computational complexity relative to conventional GA and CEFM-GA without DA,but also improves bit error rate (BER) performance. 展开更多
关键词 Multiuser detection (MUD) Ultra-wideband (UWB) genetic algorithm (GA) Complementary error functionmutation (CEFM) differential algorithm (DA)
原文传递
基于差异特性水泵机组的优选与调控
13
作者 闫静 张召 +5 位作者 位文涛 司乔瑞 李月强 薛萍 高中阳 杜梦盈 《排灌机械工程学报》 CSCD 北大核心 2024年第3期256-264,共9页
为有效降低泵站因理论抽水装置效率偏离实际情况产生的方案误差,在聚类方法的基础上,利用历史监测数据对泵站内各抽水装置的特性曲线进行校正,同时将校正结果运用到泵站优化调度模型中,构建基于差异特性水泵机组的泵站优化调度模型,以... 为有效降低泵站因理论抽水装置效率偏离实际情况产生的方案误差,在聚类方法的基础上,利用历史监测数据对泵站内各抽水装置的特性曲线进行校正,同时将校正结果运用到泵站优化调度模型中,构建基于差异特性水泵机组的泵站优化调度模型,以实现站内机组的智能优选与调控.研究结果表明:校正后曲线的理论抽水装置效率比校正前精度平均提高18.8%,更符合工程实际;相比于人工经验调度方案,基于校正后曲线的差异特性水泵机组优化方案能耗平均降低了9.08%,成本平均降低了3.59%,优于人工经验调度方案;对校正后的多台水泵机组性能曲线进行对比发现,因安装位置、累计运行台时及磨损程度不同,导致泵站内同型号水泵的抽水装置效率产生差异,最大偏差达14.63%,说明长时间运行时的泵站已无法直接通过均分流量完成最优分配,进一步证明了水泵机组差异特性研究的必要性. 展开更多
关键词 水泵机组 优化调度 水泵特性曲线校正 抽水装置差异特性 遗传算法 降耗节能
下载PDF
基于改进AOA的联合采购与配送问题研究
14
作者 吴锋艳 韩凌 +3 位作者 张世强 李彬 李婷 王林 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第3期467-473,共7页
针对算术优化算法(AOA)个体信息利用率较低和容易陷入局部最优的缺点,采用信息交换策略并结合正余弦(SCA)算法,设计了基于SCA的改进算术优化算法(EAOA),以提高AOA算法的寻优能力。采用标准测试函数测试EAOA的性能,结果表明EAOA比遗传算... 针对算术优化算法(AOA)个体信息利用率较低和容易陷入局部最优的缺点,采用信息交换策略并结合正余弦(SCA)算法,设计了基于SCA的改进算术优化算法(EAOA),以提高AOA算法的寻优能力。采用标准测试函数测试EAOA的性能,结果表明EAOA比遗传算法、差分进化算法和标准AOA更有效。针对大规模联合采购与配送协同优化问题的求解,EAOA比遗传算法、差分进化算法和标准AOA得到的总成本更低。 展开更多
关键词 联合采购与配送 算术优化算法 正余弦算法 差分进化算法 遗传算法
下载PDF
基于改进遗传算法的酒店配送机器人路径规划仿真研究
15
作者 戚英杰 李建荣 李雪林 《江苏建筑职业技术学院学报》 2024年第1期64-68,共5页
针对传统遗传算法初始种群质量不高、种群多样性不足和路径长度不理想的问题,提出了改进遗传算法。通过基于引力场模型生成初始路径,提高初始种群质量;在适应度函数中增加了惩罚因子和激励因子,提升种群质量筛选;引入差分进化算法对种... 针对传统遗传算法初始种群质量不高、种群多样性不足和路径长度不理想的问题,提出了改进遗传算法。通过基于引力场模型生成初始路径,提高初始种群质量;在适应度函数中增加了惩罚因子和激励因子,提升种群质量筛选;引入差分进化算法对种群个体之间的差异进行向量化操作,以突变概率控制种群突变数量,优化种群多样性,从而更好更快地得到全局最优解。采用改进遗传算法、传统遗传算法和蚁群算法对不同栅格地图路径规划进行仿真实验,结果表明:改进遗传算法在处理此类路径规划问题时可以快速找到最优路径,在复杂度较高的M3地图环境下相较于传统遗传算法和蚁群算法最优路径分别缩短了17.39%和7.9%。 展开更多
关键词 改进遗传算法 差分进化算法 路径规划 种群初始化 适应度函数 突变算子
下载PDF
基于Stackelberg博弈的燃料电池混合动力汽车跟车能量管理
16
作者 付主木 朱龙龙 +1 位作者 陶发展 李梦杨 《河南科技大学学报(自然科学版)》 CAS 北大核心 2024年第4期1-9,M0002,共10页
跟车场景下燃料电池混合动力汽车(FCHEV)的速度与能量管理协同优化是实现车辆节能的重要有效手段,针对现有策略中双能量源退化与能耗耦合关系不明,且难以兼顾全局优化与实时性能的问题,提出一种基于Stackelberg博弈的FCHEV跟车能量管理... 跟车场景下燃料电池混合动力汽车(FCHEV)的速度与能量管理协同优化是实现车辆节能的重要有效手段,针对现有策略中双能量源退化与能耗耦合关系不明,且难以兼顾全局优化与实时性能的问题,提出一种基于Stackelberg博弈的FCHEV跟车能量管理策略。首先,建立了燃料电池/锂电池的能耗与性能退化模型,并纳入到统一量纲的整车综合使用成本函数中;其次,提出了基于分层解耦的跟车能量管理策略,实现跟车速度与功率分配的解耦控制;最后,综合考虑跟车安全性、舒适性、燃料经济性和能源耐久性,建立跟车控制层与能量管理层对应的双层规划模型,并基于Stackelberg博弈思想设计了双层差分遗传算法对策略核心参数进行离线优化。仿真和实验结果表明:相较于模型预测控制方法,该方法可降低平均车间距误差37.7%、平均冲击度2.4%、等效氢气消耗9.3%和能源退化成本13.9%,实现了优化性能与实时性的兼顾。 展开更多
关键词 燃料电池混合动力汽车 跟车能量管理 双层规划 STACKELBERG博弈 双层差分遗传算法
下载PDF
模糊环境下基于遗传差分协同进化的多阶段投资组合模型
17
作者 胡晨阳 高岳林 孙滢 《工程数学学报》 CSCD 北大核心 2024年第1期39-52,共14页
现实经济活动中投资一般是不确定的和随机的,投资者对于风险资产的选择大多情况下是多阶段的。基于该现实因素,在模糊环境下考虑多个摩擦因素,利用交易限制引入资产的基数约束,建立可能性均值–下半方差–熵多阶段投资组合优化模型(V-S-... 现实经济活动中投资一般是不确定的和随机的,投资者对于风险资产的选择大多情况下是多阶段的。基于该现实因素,在模糊环境下考虑多个摩擦因素,利用交易限制引入资产的基数约束,建立可能性均值–下半方差–熵多阶段投资组合优化模型(V-S-M),该模型是一个多阶段混合整数规划问题。同时,给出了求解该模型的一个遗传差分协同进化算法(GAHDE),并对不同风险态度下的投资组合策略进行了分析,同时将所得数值结果与可能性均值–下半方差模型(V-M)和可能性均值–熵模型(S-M)进行模型对比,与标准的遗传算法和差分进化算法进行了算法对比,结果验证了所建模型和设计算法的优越性与有效性。 展开更多
关键词 投资组合 多阶段 模糊环境 遗传算法 差分进化算法
下载PDF
基于遗传算法整定参数的火力发电用电机伺服控制分析
18
作者 金宏伟 方匡坤 +1 位作者 张方明 银奇英 《中国工程机械学报》 北大核心 2024年第1期27-31,共5页
同步发电机的控制精度对提高火力发电效率的影响较大,为进一步提高火力发电用电机伺服控制控制精度,选用遗传算法整定驱动轴参数。从正弦信号和直线信号两个方面开展进给测试,促进跟随性能的显著提升。研究结果表明:遗传算法优化可知,... 同步发电机的控制精度对提高火力发电效率的影响较大,为进一步提高火力发电用电机伺服控制控制精度,选用遗传算法整定驱动轴参数。从正弦信号和直线信号两个方面开展进给测试,促进跟随性能的显著提升。研究结果表明:遗传算法优化可知,在当前人工经验条件进行整定得到的系统带宽接近64 Hz,响应性能较为理想。正弦信号下,采用遗传算法进行参数整定时,跟随误差更低,表现出更优的跟随性能。绝对误差极值降低27.3%,绝对误差积分降低42.4%。直线进给状态下,跟随误差更低,表现出更优的跟随性能。绝对误差极值降低28.6%,绝对误差积分降低39.1%。相对于人工经验整定方式,达到更优的误差波动控制状态,实现了较优的伺服稳定性。 展开更多
关键词 伺服电机 比例积分微分(PID)参数整定 遗传算法 并联发电机
下载PDF
多目标优化问题的进化计算方法
19
作者 卢佳明 《计算机应用文摘》 2024年第15期147-149,共3页
多目标优化问题在实际应用中广泛存在,涵盖了工程设计、资源分配、机器学习等领域。由于其具有问题空间复杂、决策变量众多及目标之间存在相互矛盾的特性,传统优化方法难以在解空间中找到全局的、非支配的解集。为解决多目标优化问题,... 多目标优化问题在实际应用中广泛存在,涵盖了工程设计、资源分配、机器学习等领域。由于其具有问题空间复杂、决策变量众多及目标之间存在相互矛盾的特性,传统优化方法难以在解空间中找到全局的、非支配的解集。为解决多目标优化问题,文章探究了基于进化计算的方法。 展开更多
关键词 多目标优化问题 进化计算 遗传算法 粒子群算法 差分进化算法
下载PDF
基于混合TLBO-DE算法的图像去噪卷积神经网络
20
作者 王小伟 高明 孙希霞 《智能计算机与应用》 2024年第8期102-108,共7页
针对用于图像去噪的卷积神经网络(Convolutional Neural Networks,CNN)的超参数与结构难以确定的问题,本文提出了一种基于混合教与学优化算法(Teaching-Learning-Based Optimization,TLBO)和差分进化算法(Differential Evolution,DE)的... 针对用于图像去噪的卷积神经网络(Convolutional Neural Networks,CNN)的超参数与结构难以确定的问题,本文提出了一种基于混合教与学优化算法(Teaching-Learning-Based Optimization,TLBO)和差分进化算法(Differential Evolution,DE)的CNN网络并应用于图像去噪。首先,建立了CNN超参数与结构优化的数学模型;其次,提出了一种混合TLBO-DE算法,并将其用于去噪CNN超参数与结构的优化。在该混合TLBO-DE算法的进化前期,种群以较大的概率采用DE算法的进化机制进行进化,从而提高种群多样性;在进化后期,种群以较大的概率采用TLBO算法的“教”机制进行进化,从而提高算法收敛速度;最后,在公共的医学图像数据集上对所提方法进行测试。实验结果表明,与基于遗传算法、DE和TLBO等算法的CNN去噪方法相比,本文所提方法具有更好的优化性能和图像去噪性能。与目前去噪性能较好的块匹配滤波(Block-Matching and 3D filtering,BM3D)、去噪卷积神经网络(Denoising Convolutional Neural Network,DnCNN)方法相比,本文所提方法具有更好的去噪性能。 展开更多
关键词 卷积神经网络 图像去噪 教与学优化算法 差分进化算法 遗传算法
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部