In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department an...In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department and the maintenance department are minimized,respectively.Two kinds of three-stage dynamic game models and a backward induction method are proposed to determine the preventive maintenance(PM)threshold.A lemma is presented to obtain the exact solution.A comprehensive numerical study is provided to illustrate the proposed maintenance model.The effectiveness is also validated by comparison with other two existed optimization models.展开更多
Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control(NC)machine tools with random maintenance quality is proposed. The proposed model is a combination of the Ki...Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control(NC)machine tools with random maintenance quality is proposed. The proposed model is a combination of the Kijima type virtual age model and the failure intensity adjustment model. Maintenance intervals of the proposed hybrid model are derived when the failure intensity increase factor and the restoration factor are both random variables with uniform distribution. The optimal maintenance policy in infinite time horizon is presented. A numerical example is given when the failures of NC machine tools are described by the log-linear process. Finally, a discussion is presented to show how the optimal results depend on the different cost parameters.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
Servicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintena...Servicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintenance strategy. In order to model the maintenance effect of servicing, this study analyzes the deterioration characteristics of system under scheduled servicing. And then the deterioration model is established from the failure mechanism by compound Poisson process. On the basis of the system damage value and failure mechanism, the failure rate refresh factor is proposed to describe the maintenance effect of servicing. A maintenance strategy is developed which combines the benefits of scheduled servicing and preventive maintenance. Then the optimization model is given to determine the optimal servicing period and preventive maintenance time, with an objective to minimize the system expected life-cycle cost per unit time and a constraint on system survival probability for the duration of mission time. Subject to mission time, it can control the ability of accomplishing the mission at any time so as to ensure the high dependability. An example of water pump rotor relating to scheduled servicing is introduced to illustrate the failure rate refresh factor and the proposed maintenance strategy. Compared with traditional methods, the numerical results show that the failure rate refresh factor can describe the maintenance effect of servicing more intuitively and objectively. It also demonstrates that this maintenance strategy can prolong the lifetime, reduce the total lifetime maintenance cost and guarantee the dependability of system.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.72061022 and 72171037).
文摘In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department and the maintenance department are minimized,respectively.Two kinds of three-stage dynamic game models and a backward induction method are proposed to determine the preventive maintenance(PM)threshold.A lemma is presented to obtain the exact solution.A comprehensive numerical study is provided to illustrate the proposed maintenance model.The effectiveness is also validated by comparison with other two existed optimization models.
基金Project(51465034)supported by the National Natural Science Foundation of China
文摘Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control(NC)machine tools with random maintenance quality is proposed. The proposed model is a combination of the Kijima type virtual age model and the failure intensity adjustment model. Maintenance intervals of the proposed hybrid model are derived when the failure intensity increase factor and the restoration factor are both random variables with uniform distribution. The optimal maintenance policy in infinite time horizon is presented. A numerical example is given when the failures of NC machine tools are described by the log-linear process. Finally, a discussion is presented to show how the optimal results depend on the different cost parameters.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金supported by the National Defence Preresearch Foundation of China(Nos.51327020105,51304010206)
文摘Servicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintenance strategy. In order to model the maintenance effect of servicing, this study analyzes the deterioration characteristics of system under scheduled servicing. And then the deterioration model is established from the failure mechanism by compound Poisson process. On the basis of the system damage value and failure mechanism, the failure rate refresh factor is proposed to describe the maintenance effect of servicing. A maintenance strategy is developed which combines the benefits of scheduled servicing and preventive maintenance. Then the optimization model is given to determine the optimal servicing period and preventive maintenance time, with an objective to minimize the system expected life-cycle cost per unit time and a constraint on system survival probability for the duration of mission time. Subject to mission time, it can control the ability of accomplishing the mission at any time so as to ensure the high dependability. An example of water pump rotor relating to scheduled servicing is introduced to illustrate the failure rate refresh factor and the proposed maintenance strategy. Compared with traditional methods, the numerical results show that the failure rate refresh factor can describe the maintenance effect of servicing more intuitively and objectively. It also demonstrates that this maintenance strategy can prolong the lifetime, reduce the total lifetime maintenance cost and guarantee the dependability of system.