With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
With large-scale development of distributed generation(DG) and its potential role in microgrids, the microgrid cluster(MGC) becomes a useful control model to assist the integration of DG. Considering that microgrids i...With large-scale development of distributed generation(DG) and its potential role in microgrids, the microgrid cluster(MGC) becomes a useful control model to assist the integration of DG. Considering that microgrids in a MGC, power dispatch optimization in a MGC is dif-ficult to achieve. In this paper, a hybrid interactive communication optimization solution(HICOS) is suggested based on flexible communication, which could be used to solve plug-in or plug-out operation states of microgrids in MGC power dispatch optimization. HICOS consists of a hierarchical architecture: the upper layer uses distributed control among multiple microgrids, with no central controller for the MGC, and the lower layer uses a central controller for each microgrid. Based on flexible communication links among microgrids, the optimal iterative information are exchanged among microgrids, thus HICOS would gradually converge to the global optimal solution.While some microgrids plug-in or plug-out, communication links will be changed, so as to unsuccessfully reach optimal solution. Differing from changeless communication links in traditional communication networks, HICOS redefines the topology of flexible communication links to meet the requirement to reach the global optimal solutions.Simulation studies show that HICOS could effectively reach the global optimal dispatch solution with non-MGC center. Especially, facing to microgrids plug-in or plug-out states, HICOS would also reach the global optimal solution based on refined communication link topology.展开更多
The operation characteristics of energy storage can help the distribution network absorb more renewable energy while improving the safety and economy of the power system.Mobile energy storage systems(MESSs)have a broa...The operation characteristics of energy storage can help the distribution network absorb more renewable energy while improving the safety and economy of the power system.Mobile energy storage systems(MESSs)have a broad application market compared with stationary energy storage systems and electric vehicles due to their flexible mobility and good dispatch ability.However,when urban traffic flows rise,the congested traffic environment will prolong the transit time of MESS,which will ultimately affect the operation state of the power networks and the economic benefits of MESS.This paper proposes a bi-level optimization model for the economic operation of MESS in coupled transportation-power networks,considering road congestion and the operation constraints of the power networks.The upper-level model depicts the daily operation scheme of MESS devised by the distribution network operator(DNO)in order to maximize the total revenue of the system.With fuzzy time windows and fuzzy road congestion indexes,the lower-level model optimizes the route for the transit problem of MESS.Therefore,road congestion that affects the transit time of MESS can be fully incorporated in the optimal operation scheme.Both the IEEE 33-bus distribution network and the 29-node transportation network are used to verify and examine the effectiveness of the proposed model.The simulation results demonstrate that the operation scheme of MESS will avoid the congestion period when considering road congestion.Besides,the transit energy consumption and the impact of the traffic environment on the economic benefits of MESS can be reduced.展开更多
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.
基金funded by the State Grid Corporation of China project:Cooperative Simulation of Power Grid and Communication Gridthe National Natural Science Funds 51407030China Postdoctoral Science Foundation 121809
文摘With large-scale development of distributed generation(DG) and its potential role in microgrids, the microgrid cluster(MGC) becomes a useful control model to assist the integration of DG. Considering that microgrids in a MGC, power dispatch optimization in a MGC is dif-ficult to achieve. In this paper, a hybrid interactive communication optimization solution(HICOS) is suggested based on flexible communication, which could be used to solve plug-in or plug-out operation states of microgrids in MGC power dispatch optimization. HICOS consists of a hierarchical architecture: the upper layer uses distributed control among multiple microgrids, with no central controller for the MGC, and the lower layer uses a central controller for each microgrid. Based on flexible communication links among microgrids, the optimal iterative information are exchanged among microgrids, thus HICOS would gradually converge to the global optimal solution.While some microgrids plug-in or plug-out, communication links will be changed, so as to unsuccessfully reach optimal solution. Differing from changeless communication links in traditional communication networks, HICOS redefines the topology of flexible communication links to meet the requirement to reach the global optimal solutions.Simulation studies show that HICOS could effectively reach the global optimal dispatch solution with non-MGC center. Especially, facing to microgrids plug-in or plug-out states, HICOS would also reach the global optimal solution based on refined communication link topology.
基金supported in part by the National Natural Science Foundation of China(No.51777126).
文摘The operation characteristics of energy storage can help the distribution network absorb more renewable energy while improving the safety and economy of the power system.Mobile energy storage systems(MESSs)have a broad application market compared with stationary energy storage systems and electric vehicles due to their flexible mobility and good dispatch ability.However,when urban traffic flows rise,the congested traffic environment will prolong the transit time of MESS,which will ultimately affect the operation state of the power networks and the economic benefits of MESS.This paper proposes a bi-level optimization model for the economic operation of MESS in coupled transportation-power networks,considering road congestion and the operation constraints of the power networks.The upper-level model depicts the daily operation scheme of MESS devised by the distribution network operator(DNO)in order to maximize the total revenue of the system.With fuzzy time windows and fuzzy road congestion indexes,the lower-level model optimizes the route for the transit problem of MESS.Therefore,road congestion that affects the transit time of MESS can be fully incorporated in the optimal operation scheme.Both the IEEE 33-bus distribution network and the 29-node transportation network are used to verify and examine the effectiveness of the proposed model.The simulation results demonstrate that the operation scheme of MESS will avoid the congestion period when considering road congestion.Besides,the transit energy consumption and the impact of the traffic environment on the economic benefits of MESS can be reduced.