This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g...This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.展开更多
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approach...In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113.展开更多
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op...When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off...This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.展开更多
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat...Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.展开更多
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ...In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.展开更多
This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differen...This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation.展开更多
The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constrai...The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.展开更多
Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is ch...Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable.展开更多
Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rul...Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system.展开更多
Dynamic programming(DP) is an effective query optimization approach to select an appropriate join order for relational database management system(RDBMS) in multi-table joins. This method was extended and made availabl...Dynamic programming(DP) is an effective query optimization approach to select an appropriate join order for relational database management system(RDBMS) in multi-table joins. This method was extended and made available in distributed DBMS(D-DBMS). The structure of this optimal solution was firstly characterized according to the distributing status of tables and data, and then the recurrence relations between a problem and its sub-problems were recursively defined. DP in D-DBMS has the same time-complexity with that in centralized DBMS, while it has the capability to solve a much more sophisticated optimal problem of multi-table join in D-DBMS. The effectiveness of this optimal strategy has been proved by experiments.展开更多
The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by ma...The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by making it more responsive and relevant to the modern-day demands of demonstration, industrialization and development. The challenge facing Landmark University is the question of which of its numerous projects they should invest to give maximum output with minimum input. In this paper, we maximize the Net Present Value (NPV) and maintain the net discount cash overflow of each project per period as contained and extracted as the secondary data of cash inflows of the Landmark University (LU) monthly financial statement and annual reports from 2012 to 2017 of which the documents have been regrouped as small and large scale projects as many enterprises make more use of the trial-and-error method and as such firms have been finding it difficult in allocating scarce resources in a manner that will ensure profit maximization and/or cost minimization with a simple and accurate decision making by the company through an optimization principle in selecting LU project under multi-period capital rationing using linear programming (LP) and integer programming (IP). The annual net cash flow which is the difference between the cash inflows and cash outflows during each period for the project was estimated and recorded. The discount factors were estimated at cost of capital of 10% for each cash flow per period with the corresponding NPV at 10% which revealed that the optimal decision achieves maximum returns of $110 × 102 and this assisted the project manager to select a large number of the variable projects that can maximize the profit which is far better than relying on an ad-hoc judgmental approach to project investment that could have cost 160 × 102 for the same project. Sensitivity analysis on the project parameters are also carried out to test the extent to which project selection is sensitive to changes in the parameters of the system revealed that a little reduction and or addition of reduced cost by certain amount or percentages to its corresponding coefficient in the objective function effect no changes in the shadow prices with solution values for variables (x1), (x4), (x5) and the optimal objective function.展开更多
The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit a...The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two ...In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.展开更多
In this study, Simplex Method, a Linear Programming technique was used to create a mathematical model that optimized the financial portfolio of Golden Guinea Breweries Plc, Nigeria. This work was motivated by the obse...In this study, Simplex Method, a Linear Programming technique was used to create a mathematical model that optimized the financial portfolio of Golden Guinea Breweries Plc, Nigeria. This work was motivated by the observed and anticipated miscalculations which Golden Guinea Breweries was bound to face if appropriate linear programming techniques were not applied in determining the profit level. This study therefore aims at using Simplex Method to create a Mathematical Model that will optimize the production of brewed drinks for Golden Guinea Breweries Plc. The first methodology involved the collection of sample data from the company, analyzed and the relevant coefficients were deployed for the coding of the model. Secondly, the indices collected from the first method were deployed in the software model called PHP simplex, an online software for solving Linear Programming Problem to access the profitability of the organization. The study showed that Linear Programming Model would give a high profit coefficient of N9,190,862,833 when compared with the result obtained from the manual computation which gave a profit coefficient of N7,172,093,375. Also, Bergedoff Lager, Eagle Stout and Bergedoff Malta were found not to contribute to overall profitability of the company and it was therefore recommended that their productions should be discontinued. It also recommends that various quantities of Golden Guinea Lager (1 × 12) and Golden Guinea Lager (1 × 24) should be produced.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
文摘This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.
基金the support of the National BioResource Project(NIG,Japan):E.coli Strain for kindly providing us with the Keio Collection using for our experimental sectionAlso this work is funded by Vicerrectoria de investigaciones at Universidad de los Andes.
文摘In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113.
基金Special Item of National Major Scientific Apparatus Development(No.2013YQ140431)
文摘When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
基金Project supported by the National Natutal Science Foundation of China
文摘This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.
基金This work was supported in part by National Natural Science Foundation of China (No. 69975003) and Foundation for Dissertation of Ph. D. Candidate of Central South University (No.030618) .
文摘Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.
基金partially supported by the National Science Foundation of China(Grants 71822105 and 91746210)。
文摘In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.
基金Supported by the National Basic Research Program of China(2012CB720500)the National High Technology Research and Development Program of China(2013AA040702)
文摘This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation.
基金Project supported by the National Natural Science Foundation of China(No. 10472003) the Natural Science Foundation of Beijing(No.3002002) the Science Foundation of Beijing Municipal Commission of Education(No.KM200410005019)
文摘The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.
基金Sponsored by the National Natural Science Foundation of China(Grant.50139010).
文摘Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable.
文摘Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system.
文摘Dynamic programming(DP) is an effective query optimization approach to select an appropriate join order for relational database management system(RDBMS) in multi-table joins. This method was extended and made available in distributed DBMS(D-DBMS). The structure of this optimal solution was firstly characterized according to the distributing status of tables and data, and then the recurrence relations between a problem and its sub-problems were recursively defined. DP in D-DBMS has the same time-complexity with that in centralized DBMS, while it has the capability to solve a much more sophisticated optimal problem of multi-table join in D-DBMS. The effectiveness of this optimal strategy has been proved by experiments.
文摘The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by making it more responsive and relevant to the modern-day demands of demonstration, industrialization and development. The challenge facing Landmark University is the question of which of its numerous projects they should invest to give maximum output with minimum input. In this paper, we maximize the Net Present Value (NPV) and maintain the net discount cash overflow of each project per period as contained and extracted as the secondary data of cash inflows of the Landmark University (LU) monthly financial statement and annual reports from 2012 to 2017 of which the documents have been regrouped as small and large scale projects as many enterprises make more use of the trial-and-error method and as such firms have been finding it difficult in allocating scarce resources in a manner that will ensure profit maximization and/or cost minimization with a simple and accurate decision making by the company through an optimization principle in selecting LU project under multi-period capital rationing using linear programming (LP) and integer programming (IP). The annual net cash flow which is the difference between the cash inflows and cash outflows during each period for the project was estimated and recorded. The discount factors were estimated at cost of capital of 10% for each cash flow per period with the corresponding NPV at 10% which revealed that the optimal decision achieves maximum returns of $110 × 102 and this assisted the project manager to select a large number of the variable projects that can maximize the profit which is far better than relying on an ad-hoc judgmental approach to project investment that could have cost 160 × 102 for the same project. Sensitivity analysis on the project parameters are also carried out to test the extent to which project selection is sensitive to changes in the parameters of the system revealed that a little reduction and or addition of reduced cost by certain amount or percentages to its corresponding coefficient in the objective function effect no changes in the shadow prices with solution values for variables (x1), (x4), (x5) and the optimal objective function.
基金the Humanities and Social Science Foundation of the Ministry of Education of China(Grant No.20YJCZH121).
文摘The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
文摘In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.
文摘In this study, Simplex Method, a Linear Programming technique was used to create a mathematical model that optimized the financial portfolio of Golden Guinea Breweries Plc, Nigeria. This work was motivated by the observed and anticipated miscalculations which Golden Guinea Breweries was bound to face if appropriate linear programming techniques were not applied in determining the profit level. This study therefore aims at using Simplex Method to create a Mathematical Model that will optimize the production of brewed drinks for Golden Guinea Breweries Plc. The first methodology involved the collection of sample data from the company, analyzed and the relevant coefficients were deployed for the coding of the model. Secondly, the indices collected from the first method were deployed in the software model called PHP simplex, an online software for solving Linear Programming Problem to access the profitability of the organization. The study showed that Linear Programming Model would give a high profit coefficient of N9,190,862,833 when compared with the result obtained from the manual computation which gave a profit coefficient of N7,172,093,375. Also, Bergedoff Lager, Eagle Stout and Bergedoff Malta were found not to contribute to overall profitability of the company and it was therefore recommended that their productions should be discontinued. It also recommends that various quantities of Golden Guinea Lager (1 × 12) and Golden Guinea Lager (1 × 24) should be produced.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.