Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau...Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.展开更多
Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigate...Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.展开更多
The mechanically bonded CRA-lined pipe is developed to meet the need forcorrosion-resistant alloy steel pipe. Residual contact pressure at the interface of lined pipe isimportant factor that governs the quality of lin...The mechanically bonded CRA-lined pipe is developed to meet the need forcorrosion-resistant alloy steel pipe. Residual contact pressure at the interface of lined pipe isimportant factor that governs the quality of lined pipe. A simplified theoretical method ispresented to predict the residual contact pressure created by hydraulic pressure. The calculatingequation related hydro-forming pressure to the residual contact pressure between two metal faces isderived. And the validation of the proposed equation is accomplished by comparing its result tothose obtained by experimental investigation.展开更多
A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA...A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA-lined pipe has been researched and developed. Itsoperational principal and technical characteristic is also introduced. The stress and strain in theliner and outer pipe during the hydroforming process have been analyzed and the mechanism ofhydraulic expansion method is studied theoretically. The final forming pressure formula is suggestedand the theoretical analysis is verified by experimental investigation. The results indicate thatthe new technology is feasible and can be applied in industrial production.展开更多
Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high p...Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high product purity and no environmental pollution. When SHS combines with centrifugal casting, ceramic-lined compound copper pipe(CLCCP) can be produced, the inner surface of copper pipe can produce ceramic coatings having good wear and corrosion resistance. In order to increase the densification degree, combining strength and toughness of ceramic layer, the effects of additives such as SiO2, CrO3, Na2B4O7 and ZrO2 are researched, adding SiO2 and CrO3 in thermite, the densification degree of ceramic layer increases, adding Na2 B4 O7 in thermite can increase combining strength, adding ZrO2 in thermite can increase the toughness of ceramic layer. CLCCP is used in tubular billet crystallizer, having excellent service effects and decreasing the production cost of tubular billet.展开更多
High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline pro...High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline projects. China' s initiatives to construct long-distance natural gas pipelines has brought in new opportunities for the development of X80 line pipes. Baosteel has designed the optimum chemical composition of X80 with high niobium and low molybdenum content. In addition, a welding experimental platform and a finite element model (FEM) have supported the development of X80 UOE pipes in an efficient and economical way. The application and recent development of X80 UOE pipes were introduced in this paper. To comply with the requirements of the Second West-East Gas Pipeline Project (2^nd WEPP ), X80 pipeline steel with low carbon bainite microstructure was developed by utilizing the optimized composition and TMCP process. The matching welding material, welding procedure and UOE forming processes for 1 219mm outside diameter X80 UOE pipes were also developed. More than 340 000 t of X80 UOE pipes were produced and applied in the 2^nd WEPP. Furthermore, to meet the prospective demand for long-distance gas pipelines with an annual transportation capacity of over 40 billion m3 ,larger size X80 UOE pipes with 1 422 mm OD × 30. 8 mm WT were trial produced recently. DWTT performance, the main technical challenge for heavier wall pipes, was improved by using optimized microstructural design. The newly developed X80 pipes can be potentially used for larger transportation capacity pipelines in China.展开更多
The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects th...The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects the final dimensional controls at the later stage i.e. after mechanical expansion of the line pipe. The second part is to make right welding joint geometry to make the final long seam weld of line pipe. The welding joint geometry ultimately controls soundness of final seam weld at later stage i.e. during submerged arc welding of the line pipe. As far as curvature or shape of line pipe is concerned, important operation is making the required curvature along the edges of TMCP and ACC (Thermo mechanical controlled processing and accelerated cooling process) plate for line pipe (Plate Edge Crimping press) up to the 150 mm in width minimum and forming of the line pipe at J-C-O press. The selection of dies with proper hardness and curvature in both the operation plays a vital role in the formation of line pipes. The main parameters of selection dies (Tools) are size of line pipe for which dies/tools are to be made i.e. the diameter of line pipe, thickness of line pipe and most important is grade of line pipe (Strength level). The grade or strength level decides amount of spring back behavior of the steel Plate. The spring back behavior again varies from steel mill to steel mill in the same grade of HR plate. This is because the each steel mill has its own manufacturing procedures to produce the TMCP and ACC plate. The plate for line pipe is produced through TMCP (Thermo mechanical controlled processing) and accelerated cooling process. In this process the strength level is achieved by the chemical composition of the slab, thickness of the slab, reheating temperature, roughing temperature at which reduction in the thickness, finish rolling temperature and finally the accelerated cooling temperature rate.展开更多
This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement ...This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.展开更多
During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing...During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.展开更多
The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti corrosion method with cost efficiency, environment ...The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti corrosion method with cost efficiency, environment friendliness and stable coating quality. The quality of the coating on the bent pipe fully meets the requirements of the current national and industrial standards. The application of the technology has filled the gap in the bent pipe anti corrosion coating area of China, and leads the world technologically. With this technology the coating quality of the bent pipe has greatly improved, resulting in significant social and economic benefits. With the use of the technology in various large scale pipeline projects such as the "West to East Gas Pipeline Project", it will exhibite a greater potential in the future pipeline projects with a broad application prospect.展开更多
This paper introduces mechanical and metallurgical properties of 27mm thick Grade X80 high strain line pipe steel which aims at constructing long distance natural gas over permafrost and seismic areas.The steel is mol...This paper introduces mechanical and metallurgical properties of 27mm thick Grade X80 high strain line pipe steel which aims at constructing long distance natural gas over permafrost and seismic areas.The steel is molybdenum and boron free.Dual phase of the X80 steel plates are regulated by thermal-mechanical controlled processing.The outer diameter of 1219mm pipes are manufactured by UOE process.DWTT toughness and longitudinal tensile properties including the Rt0.5/Rm,Rt1.5/Rt0.5 and Rt2.0/Rt1.0 are analyzed on both the plates and the pipes.Strain aging properties are also evaluated on the base material of the pipe,demonstrating that the pipe complies well with the pipeline construction requirements.Strengthening effects of precipitates are analyzed,revealing a 58.1MPa strengthening contribution by precipitates less than 20nm in size.Dislocation hardening is approximately 176MPa in the present studied steel.展开更多
This paper presents the applications of vibration monitoring and a diagnosis technique on the predictive maintenance of pipe line pumps on offshore platforms. The monitored ten pumps are distributed on the past three...This paper presents the applications of vibration monitoring and a diagnosis technique on the predictive maintenance of pipe line pumps on offshore platforms. The monitored ten pumps are distributed on the past three petroleum platforms of the CACT (C: China offshove Southern; A: Agip; C: Chivron; T: Texaco) Operation Group in the Huizhou oil field. By the periodical vibration survey in recent three years, the typical faults and the vibration features of these pumps have been summarized, which set up the basis for efficient predictive maintenance of this key equipment offshore.展开更多
X70 grade large diameter line pipe with helical and longitudinal seam SAW was developed and used in West-East Pipeline Project of Petrochina. The operation pressure of the pipeline was designed as 10 MPa, with diamete...X70 grade large diameter line pipe with helical and longitudinal seam SAW was developed and used in West-East Pipeline Project of Petrochina. The operation pressure of the pipeline was designed as 10 MPa, with diameter of 1016 mm OD. This project represents the first high-pressure, large diameter and high strength grade gas pipeline in China. All the factors affecting the safety of the pipeline shall be considered. The welds quality of line pipe is very important for safety of the pipeline. Acicular ferrite type X70 grade pipeline steel was adopted for the base material. The welds performances of X70 line pipes with 1016mm OD and 14.6-21.0 mm WT has reached a very high level, especially of low temperature Charpy V impact toughness of welds metal. Welding technique and quality status of X70 line pipe of China are investigated in this paper.展开更多
基金Fofinancially supported by the National Natural Science Foundation of China(Grant No.52271288)Peiyang Scholar Initiation Fund from Tianjin University。
文摘Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.
基金financial support from the National Natural Science Foundation of China (Nos. 51004084, 51274170)the Doctoral Fund of Ministry of Education of China (No. 20105121120002)
文摘Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.
文摘The mechanically bonded CRA-lined pipe is developed to meet the need forcorrosion-resistant alloy steel pipe. Residual contact pressure at the interface of lined pipe isimportant factor that governs the quality of lined pipe. A simplified theoretical method ispresented to predict the residual contact pressure created by hydraulic pressure. The calculatingequation related hydro-forming pressure to the residual contact pressure between two metal faces isderived. And the validation of the proposed equation is accomplished by comparing its result tothose obtained by experimental investigation.
基金This project is supported by National Science and Technology Foundation of China (No.96-918-02-03).
文摘A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA-lined pipe has been researched and developed. Itsoperational principal and technical characteristic is also introduced. The stress and strain in theliner and outer pipe during the hydroforming process have been analyzed and the mechanism ofhydraulic expansion method is studied theoretically. The final forming pressure formula is suggestedand the theoretical analysis is verified by experimental investigation. The results indicate thatthe new technology is feasible and can be applied in industrial production.
文摘Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high product purity and no environmental pollution. When SHS combines with centrifugal casting, ceramic-lined compound copper pipe(CLCCP) can be produced, the inner surface of copper pipe can produce ceramic coatings having good wear and corrosion resistance. In order to increase the densification degree, combining strength and toughness of ceramic layer, the effects of additives such as SiO2, CrO3, Na2B4O7 and ZrO2 are researched, adding SiO2 and CrO3 in thermite, the densification degree of ceramic layer increases, adding Na2 B4 O7 in thermite can increase combining strength, adding ZrO2 in thermite can increase the toughness of ceramic layer. CLCCP is used in tubular billet crystallizer, having excellent service effects and decreasing the production cost of tubular billet.
文摘High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline projects. China' s initiatives to construct long-distance natural gas pipelines has brought in new opportunities for the development of X80 line pipes. Baosteel has designed the optimum chemical composition of X80 with high niobium and low molybdenum content. In addition, a welding experimental platform and a finite element model (FEM) have supported the development of X80 UOE pipes in an efficient and economical way. The application and recent development of X80 UOE pipes were introduced in this paper. To comply with the requirements of the Second West-East Gas Pipeline Project (2^nd WEPP ), X80 pipeline steel with low carbon bainite microstructure was developed by utilizing the optimized composition and TMCP process. The matching welding material, welding procedure and UOE forming processes for 1 219mm outside diameter X80 UOE pipes were also developed. More than 340 000 t of X80 UOE pipes were produced and applied in the 2^nd WEPP. Furthermore, to meet the prospective demand for long-distance gas pipelines with an annual transportation capacity of over 40 billion m3 ,larger size X80 UOE pipes with 1 422 mm OD × 30. 8 mm WT were trial produced recently. DWTT performance, the main technical challenge for heavier wall pipes, was improved by using optimized microstructural design. The newly developed X80 pipes can be potentially used for larger transportation capacity pipelines in China.
文摘The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects the final dimensional controls at the later stage i.e. after mechanical expansion of the line pipe. The second part is to make right welding joint geometry to make the final long seam weld of line pipe. The welding joint geometry ultimately controls soundness of final seam weld at later stage i.e. during submerged arc welding of the line pipe. As far as curvature or shape of line pipe is concerned, important operation is making the required curvature along the edges of TMCP and ACC (Thermo mechanical controlled processing and accelerated cooling process) plate for line pipe (Plate Edge Crimping press) up to the 150 mm in width minimum and forming of the line pipe at J-C-O press. The selection of dies with proper hardness and curvature in both the operation plays a vital role in the formation of line pipes. The main parameters of selection dies (Tools) are size of line pipe for which dies/tools are to be made i.e. the diameter of line pipe, thickness of line pipe and most important is grade of line pipe (Strength level). The grade or strength level decides amount of spring back behavior of the steel Plate. The spring back behavior again varies from steel mill to steel mill in the same grade of HR plate. This is because the each steel mill has its own manufacturing procedures to produce the TMCP and ACC plate. The plate for line pipe is produced through TMCP (Thermo mechanical controlled processing) and accelerated cooling process. In this process the strength level is achieved by the chemical composition of the slab, thickness of the slab, reheating temperature, roughing temperature at which reduction in the thickness, finish rolling temperature and finally the accelerated cooling temperature rate.
文摘This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.
文摘During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.
文摘The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti corrosion method with cost efficiency, environment friendliness and stable coating quality. The quality of the coating on the bent pipe fully meets the requirements of the current national and industrial standards. The application of the technology has filled the gap in the bent pipe anti corrosion coating area of China, and leads the world technologically. With this technology the coating quality of the bent pipe has greatly improved, resulting in significant social and economic benefits. With the use of the technology in various large scale pipeline projects such as the "West to East Gas Pipeline Project", it will exhibite a greater potential in the future pipeline projects with a broad application prospect.
文摘This paper introduces mechanical and metallurgical properties of 27mm thick Grade X80 high strain line pipe steel which aims at constructing long distance natural gas over permafrost and seismic areas.The steel is molybdenum and boron free.Dual phase of the X80 steel plates are regulated by thermal-mechanical controlled processing.The outer diameter of 1219mm pipes are manufactured by UOE process.DWTT toughness and longitudinal tensile properties including the Rt0.5/Rm,Rt1.5/Rt0.5 and Rt2.0/Rt1.0 are analyzed on both the plates and the pipes.Strain aging properties are also evaluated on the base material of the pipe,demonstrating that the pipe complies well with the pipeline construction requirements.Strengthening effects of precipitates are analyzed,revealing a 58.1MPa strengthening contribution by precipitates less than 20nm in size.Dislocation hardening is approximately 176MPa in the present studied steel.
文摘This paper presents the applications of vibration monitoring and a diagnosis technique on the predictive maintenance of pipe line pumps on offshore platforms. The monitored ten pumps are distributed on the past three petroleum platforms of the CACT (C: China offshove Southern; A: Agip; C: Chivron; T: Texaco) Operation Group in the Huizhou oil field. By the periodical vibration survey in recent three years, the typical faults and the vibration features of these pumps have been summarized, which set up the basis for efficient predictive maintenance of this key equipment offshore.
文摘X70 grade large diameter line pipe with helical and longitudinal seam SAW was developed and used in West-East Pipeline Project of Petrochina. The operation pressure of the pipeline was designed as 10 MPa, with diameter of 1016 mm OD. This project represents the first high-pressure, large diameter and high strength grade gas pipeline in China. All the factors affecting the safety of the pipeline shall be considered. The welds quality of line pipe is very important for safety of the pipeline. Acicular ferrite type X70 grade pipeline steel was adopted for the base material. The welds performances of X70 line pipes with 1016mm OD and 14.6-21.0 mm WT has reached a very high level, especially of low temperature Charpy V impact toughness of welds metal. Welding technique and quality status of X70 line pipe of China are investigated in this paper.