In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the obser...In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon's track and intensity, although the results are not perfect.展开更多
Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting f...Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting forecast data only at individual weather stations.In this study,a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model(ECMWF-IFS): 2-m temperature,2-m relative humidity,10-m wind speed,and 10-m wind direction,with a forecast lead time of 24 h to 240 h in North China.First,the forecast correction problem is transformed into an image-toimage translation problem in deep learning under the CU-net architecture,which is based on convolutional neural networks.Second,the ECMWF-IFS forecasts and ECMWF reanalysis data(ERA5) from 2005 to 2018 are used as training,validation,and testing datasets.The predictors and labels(ground truth) of the model are created using the ECMWF-IFS and ERA5,respectively.Finally,the correction performance of CU-net is compared with a conventional method,anomaly numerical correction with observations(ANO).Results show that forecasts from CU-net have lower root mean square error,bias,mean absolute error,and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h.CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics,whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity.For the correction of the 10-m wind direction forecast,which is often difficult to achieve,CU-net also improves the correction performance.展开更多
Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications...Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.展开更多
An effective improvement on the empirical orthogonal function(EOF)–based bias correctionmethod for seasonal forecasts is proposed in this paper,by introducing a stepwise regression method into the process of EOF time...An effective improvement on the empirical orthogonal function(EOF)–based bias correctionmethod for seasonal forecasts is proposed in this paper,by introducing a stepwise regression method into the process of EOF time series correction.Using 30-year(1981–2010)hindcast results from IAP AGCM4.1(the latest version of this model),the improved method is validated for the prediction of summer(June–July–August)rainfall anomalies in Southeast China.The results in terms of the pattern correction coefficient(PCC)of rainfall anomalies shows that the 30-year-averaged prediction skill improves from 0.01 to 0.06 with the original correction method,and to 0.29 using the improved method.The applicability in real-time prediction is also investigated,using 2016 summer rainfall prediction as a test case.With a PCC of 0.59,the authors find that the new correction method significantly improves the prediction skill;the PCC using the direct prediction of the model is?0.04,and using the old bias correction method it is 0.37.展开更多
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee...Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.展开更多
Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study wa...Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study was proposed and performed on raw products from two climate models,the First Institute Oceanography Earth System Model(FIOESM)and the National Centers for Environmental Prediction(NCEP)Climate Forecast System(CFS),to improve 60 days predictions for Arctic sea ice.Both models were initialized on July 1,August 1,and September 1 in 2018.A 60-day forecast was conducted as a part of the official sea ice service,especially for the ninth Chinese National Arctic Research Expedition(CHINARE)and the China Ocean Shipping(Group)Company(COSCO)Northeast Passage voyages during the summer of 2018.The results indicated that raw products from FIOESM underestimated sea ice concentration(SIC)overall,with a mean bias of SIC up to 30%.Bias correction resulted in a 27%improvement in the Root Mean Square Error(RMSE)of SIC and a 10%improvement in the Integrated Ice Edge Error(IIEE)of sea ice edge(SIE).For the CFS,the SIE overestimation in the marginal ice zone was the dominant features of raw products.Bias correction provided a 7%reduction in the RMSE of SIC and a 17%reduction in the IIEE of SIE.In terms of sea ice extent,FIOESM projected a reasonable minimum time and amount in mid-September;however,CFS failed to project both.Additional comparison with subseasonal to seasonal(S2S)models suggested that the bias correction methodology used in this study was more effective when predictions had larger biases.展开更多
To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radian...To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radiance data.The difference in the two schemes lies in the predictors use in air-mass bias correction.The predictors used in SCHEME 1 are all obtained from model first-guess,while those in SCHEME 2 are from model first-guess and radiance observations.The results from the two schemes show that after bias correction,the observation residual became smaller and closer to a Gaussian distribution.For both land and ocean data sets,the results obtained from SCHEME 1 are similar to those from SCHEME 2,which indicates that the predictors could be used in bias correction of ATOVS data.展开更多
Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferome...Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferometric infrared sounder(GIIRS)of FengYun-4 A(FY-4 A)observation and simulated brightness temperature based on background field,the brightness temperature bias correction of GIIRS channel is carried out based on random forest(RF)and extreme gradient boosting(XGBoost)machine learning.Based on the case data of Typhoon"Haishen",the correction effect of machine learning method is compared with Harris and Kelly’s"off-line"method,and the importance of different predictors to the bias correction is further discussed.The experimental results show that the systematic bias is effectively corrected,and the following conclusions are obtained:the correction effect is improved by adding geographic information(longitude and latitude)into the predictors;under the given combination of predictors,the correction effect of XGBoost is the best,followed by random forest,and finally offline method,but the three methods can correct the bias effectively;compared with long wave data of FY-4 A/GIIRS,machine learning may be more feasible for medium wave data bias correction.展开更多
Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissio...Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissions scenarios.This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical(1980−2005)temperature simulations over East Asia.Future(2006−49)temperature trends under the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method.Results show the following:(1)The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions,especially in the Tibetan Plateau region.(2)All bias correction methods can significantly reduce the simulation biases.The quantile mapping method outperforms other bias correction methods in all RCMs,with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8%(HadGEM3-RA),63.2%(MM5),51.3%(RegCM),80.7%(YSU-RCM)and 62.0%(WRF).(3)The Bayesian model averaging(BMA)method outperforms the simple multi-model averaging(SMA)method in narrowing the uncertainty of bias-corrected results.For the spatial correlation coefficient,the improvement rate of the BMA method ranges from 2%to 31%over the 10 subregions,when compared with individual RCMs.(4)For temperature projections,the warming is significant,ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario.(5)The quantile mapping method reduces the uncertainty over all subregions by between 66%and 94%.展开更多
Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional...Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.展开更多
Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and dis...Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.展开更多
In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function...In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.展开更多
In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three...In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three simulations were conducted with a 25-km grid spacing for the period 1980–2014.The first simulation(WRF_ERA5)was driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5)dataset and served as the validation dataset.The original GCM dataset(MPI-ESM1-2-HR model)was used to drive the second simulation(WRF_GCM),while the third simulation(WRF_GCMbc)was driven by the bias-corrected GCM dataset.The bias-corrected GCM data has an ERA5-based mean and interannual variance and long-term trends derived from the ensemble mean of 18 CMIP6 models.Results demonstrate that the WRF_GCMbc significantly reduced the root-mean-square errors(RMSEs)of the climatological mean of downscaled variables,including temperature,precipitation,snow,wind,relative humidity,and planetary boundary layer height by 50%–90%compared to the WRF_GCM.Similarly,the RMSEs of interannual-tointerdecadal variances of downscaled variables were reduced by 30%–60%.Furthermore,the WRF_GCMbc better captured the annual cycle of the monsoon circulation and intraseasonal and day-to-day variabilities.The leading empirical orthogonal function(EOF)shows a monopole precipitation mode in the WRF_GCM.In contrast,the WRF_GCMbc successfully reproduced the observed tri-pole mode of summer precipitation over eastern China.This improvement could be attributed to a better-simulated location of the western North Pacific subtropical high in the WRF_GCMbc after GCM bias correction.展开更多
The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method wi...The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method with bias correction is proposed.This method firstly introduces fractional order distance regularized term to punish the deviation between the level set function(LSF)and the signed distance function.Secondly a series of covering template is constructed to calculate fractional derivative and its conjugate of image pixel.Thirdly introducing the offset correction term and fully using the local clustering property of image intensity,the local clustering criterion of image intensity is defined and integrated with the neighborhood center to obtain the global criterion of image segmentation.Finally,the fractional distance regularization,offset correction,and external energy constraints are combined,and the energy optimization segmentation method for noisy image is established by level set.Experimental results show that the proposed method can accurately segment the image,and effectively improve the efficiency and robustness of exiting state of the art level set related algorithms.展开更多
The variational assimilation theory is generally based on unbiased observations. In practice, however, almost all observations suffer from biases arising from observational instruments, radiative transfer operator, pr...The variational assimilation theory is generally based on unbiased observations. In practice, however, almost all observations suffer from biases arising from observational instruments, radiative transfer operator, precondition of data, and so on. Therefore, a bias correction scheme is indispensable. The current scheme for radiance bias correction in the GRAPES 3DVar system is an offline scheme. It is actually a static correction for the radiance bias before the process of cost function minimization. In consideration of its effects on forecast results, this kind of scheme has some shortcomings. Thus, this study provides a variational bias correction (VarBC) scheme for the GRAPES 3DVar system following Dee’s idea. In the VarBC scheme, the observation operator is modified and a new control variable is defined by taking the predictor coefficients as the control parameters. According to the feature of the GRAPES-3DVAR, an incremental formulation is applied and the original bias correction scheme is maintained in the actual process of observations. The VarBC is designed to co-exist with the original scheme, because it is a dynamic revision to the observational operator on the basis of the old method, i.e., it adjusts the model state vector along with the control parameters to an unbiased state in the process of minimization and the assimilation system remains consistent with available information automatically. Preliminary experimental results show that the mean departures of background-minus-observation and analysis-minus-observation are reduced as expected. In a case study of the heavy rainfall that happened in South China on 11–13 June 2008, the 500-hPa geopotential height is better simulated using the analyzed field from the VarBC as the initial condition.展开更多
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no...A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.展开更多
Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalm...Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalman filter (KF) is applied to 72-h wind speed forecasts from the WRF model in Zhangbei wind farm for a period over two years. The KF approach shows a remarkable ability in improving the raw forecasts by decreasing the root-mean-square error by 16% from 3.58 to 3.01 m s−1, the mean absolute error by 14% from 2.71 to 2.34 m s−1, the bias from 0.22 to − 0.19 m s−1, and improving the correlation from 0.58 to 0.66. The KF significantly reduces random errors of the model, showing the capability to deal with the forecast errors associated with physical processes which cannot be accurately handled by the numerical model. In addition, the improvement of the bias correction is larger for wind speeds sensitive to wind power generation. So the KF approach is suitable for short-term wind power prediction.展开更多
Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study com...Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study compares and evaluates two kinds of precipitation datasets,the reanalysis product downscaled by the Weather Research and Forecasting(WRF)output,and the satellite product,the Tropical Rainfall Measuring Mission(TRMM)Multisatellite Precipitation Analysis(TMPA)product,as well as their bias-corrected datasets in the Middle Qilian Mountain in Northwest China.Results show that the WRF output with finer resolution perfonns well in both estimating precipitation and hydrological simulation,while the TMPA product is unreliable in high mountainous areas.Moreover,bias-corrected WRF output also performs better than bias-corrected TMPA product.Combined with the previous studies,atmospheric reanalysis datasets are more suitable than the satellite products in high mountainous areas.Climate is more important than altitude for the\falseAlarms'events of the TRMM product.Designed to focus on the tropical areas,the TMPA product mistakes certain meteorological situations for precipitation in subhumid and semiarid areas,thus causing significant"falseAlarms"events and leading to significant overestimations and unreliable performance.Simple linear bias correction method,only removing systematical errors,can significantly improves the accuracy of both the WRF output and the TMPA product in arid high mountainous areas with data scarcity.Evaluated by hydrological simulations,the bias-corrected WRF output is more reliable than the gauge dataset.Thus,data merging of the WRF output and gauge observations would provide more reliable precipitation estimations in arid high mountainous areas.展开更多
<p align="justify"> <span style="font-family:Verdana;">This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data ...<p align="justify"> <span style="font-family:Verdana;">This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data used comprised station-based monthly gridded rainfall data sourced from the Climate Research </span><span style="font-family:Verdana;">Unit (CRU) and monthly model outputs from the Fourth Edition of the Rossby Centre (RCA4) Regional Climate Model (RCM), which has scaled-down </span><span style="font-family:Verdana;">nine GCMs for Africa. Although the 9 Global Climate Models (GCMs) downscaled by the RCA4 model was not very good at simulating rainfall in Kenya, the ensemble of the 9 models performed better and could be used for further studies. The ensemble of the models was thus bias-corrected using the scaling method to reduce the error;lower values of bias and Normalized Root Mean Square Error (NRMSE) w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> recorded when compared to the uncorrected models. The bias-corrected ensemble was used to study the spatial and temporal behaviour of rainfall under baseline (1971 to 2000) and future RCP 4.5 and 8.5 scenarios (2021 to 2050). An insignificant trend was noted under the </span><span style="font-family:Verdana;">baseline condition during the March-May (MAM) and October-December</span> <span style="font-family:Verdana;">(OND) rainfall seasons. A positive significant trend at 5% level was noted</span><span style="font-family:Verdana;"> under RCP 4.5 and 8.5 scenarios in some stations during both MAM and OND seasons. The increase in rainfall was attributed to global warming due to increased anthropogenic emissions of greenhouse gases. Results on the spatial variability of rainfall indicate the spatial extent of rainfall will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the baseline;the increase is higher under the RCP 8.5 scenario. Overall rainfall was found to be highly variable in space and time, there is a need to invest in the early dissemination of weather forecasts to help farmers adequately prepare in case of unfavorable weather. Concerning the expected increase in rainfall in the future, policymakers need to consider the results of this study while preparing mitigation strategies against the effects of changing rainfall patterns.</span></span> </p>展开更多
Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draf...Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos KZCX2-YW-202 and KZCX2-YW-Q03-3)the Chinese Special Scientific Research Project for Public Interest (Grant No GYHY200906004)
文摘In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon's track and intensity, although the results are not perfect.
基金supported in part by the National Key R&D Program of China (Grant No.2018YFF0300102)the National Natural Science Foundation of China (Grant Nos.41875049 and 41575050)the Beijing Natural Science Foundation (Grant No.8212025)。
文摘Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting forecast data only at individual weather stations.In this study,a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model(ECMWF-IFS): 2-m temperature,2-m relative humidity,10-m wind speed,and 10-m wind direction,with a forecast lead time of 24 h to 240 h in North China.First,the forecast correction problem is transformed into an image-toimage translation problem in deep learning under the CU-net architecture,which is based on convolutional neural networks.Second,the ECMWF-IFS forecasts and ECMWF reanalysis data(ERA5) from 2005 to 2018 are used as training,validation,and testing datasets.The predictors and labels(ground truth) of the model are created using the ECMWF-IFS and ERA5,respectively.Finally,the correction performance of CU-net is compared with a conventional method,anomaly numerical correction with observations(ANO).Results show that forecasts from CU-net have lower root mean square error,bias,mean absolute error,and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h.CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics,whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity.For the correction of the 10-m wind direction forecast,which is often difficult to achieve,CU-net also improves the correction performance.
基金supported by International Partnership Pro-ject of the CAS (CXTD-Z2005-2)the One Hundred Talents program of CSA, and the U.S. National Science Foundation OPP grants 0230083, 0612334, and 0632160
文摘Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.
基金jointly supported by the National Key Research and Development Program of China [grant number2016YFC0402702]the Key Project of the Meteorological Public Welfare Research Program [grant number GYHY201406021]the National Natural Science Foundation of China [grant numbers 41575095 and 41661144032]
文摘An effective improvement on the empirical orthogonal function(EOF)–based bias correctionmethod for seasonal forecasts is proposed in this paper,by introducing a stepwise regression method into the process of EOF time series correction.Using 30-year(1981–2010)hindcast results from IAP AGCM4.1(the latest version of this model),the improved method is validated for the prediction of summer(June–July–August)rainfall anomalies in Southeast China.The results in terms of the pattern correction coefficient(PCC)of rainfall anomalies shows that the 30-year-averaged prediction skill improves from 0.01 to 0.06 with the original correction method,and to 0.29 using the improved method.The applicability in real-time prediction is also investigated,using 2016 summer rainfall prediction as a test case.With a PCC of 0.59,the authors find that the new correction method significantly improves the prediction skill;the PCC using the direct prediction of the model is?0.04,and using the old bias correction method it is 0.37.
基金The National Key Research and Development Program of China under contract No.2018YFC1406206the National Natural Science Foundation of China under contract No.41876014.
文摘Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.
基金The National Key Research and Development Program of China under contract No.2018YFC1407206the National Natural Science Foundation of China under contract Nos 41821004 and U1606405the Basic Scientific Fund for National Public Research Institute of China(Shu Xingbei Young Talent Program)under contract No.2019S06.
文摘Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study was proposed and performed on raw products from two climate models,the First Institute Oceanography Earth System Model(FIOESM)and the National Centers for Environmental Prediction(NCEP)Climate Forecast System(CFS),to improve 60 days predictions for Arctic sea ice.Both models were initialized on July 1,August 1,and September 1 in 2018.A 60-day forecast was conducted as a part of the official sea ice service,especially for the ninth Chinese National Arctic Research Expedition(CHINARE)and the China Ocean Shipping(Group)Company(COSCO)Northeast Passage voyages during the summer of 2018.The results indicated that raw products from FIOESM underestimated sea ice concentration(SIC)overall,with a mean bias of SIC up to 30%.Bias correction resulted in a 27%improvement in the Root Mean Square Error(RMSE)of SIC and a 10%improvement in the Integrated Ice Edge Error(IIEE)of sea ice edge(SIE).For the CFS,the SIE overestimation in the marginal ice zone was the dominant features of raw products.Bias correction provided a 7%reduction in the RMSE of SIC and a 17%reduction in the IIEE of SIE.In terms of sea ice extent,FIOESM projected a reasonable minimum time and amount in mid-September;however,CFS failed to project both.Additional comparison with subseasonal to seasonal(S2S)models suggested that the bias correction methodology used in this study was more effective when predictions had larger biases.
基金National Natural Science Foundation of China (40875021, 40930951)Knowledge Innovation Program of Chinese Academy of Sciences ( KZCX2-YW-Q03-3)
文摘To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radiance data.The difference in the two schemes lies in the predictors use in air-mass bias correction.The predictors used in SCHEME 1 are all obtained from model first-guess,while those in SCHEME 2 are from model first-guess and radiance observations.The results from the two schemes show that after bias correction,the observation residual became smaller and closer to a Gaussian distribution.For both land and ocean data sets,the results obtained from SCHEME 1 are similar to those from SCHEME 2,which indicates that the predictors could be used in bias correction of ATOVS data.
基金Supported by the National Natural Science Foundation of China(41805080)Special Project for Innovation and Development of Anhui Meteorological Bureau(CXB202101)Central Asian Fund for Atmospheric Science Research(CAAS202003)。
文摘Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferometric infrared sounder(GIIRS)of FengYun-4 A(FY-4 A)observation and simulated brightness temperature based on background field,the brightness temperature bias correction of GIIRS channel is carried out based on random forest(RF)and extreme gradient boosting(XGBoost)machine learning.Based on the case data of Typhoon"Haishen",the correction effect of machine learning method is compared with Harris and Kelly’s"off-line"method,and the importance of different predictors to the bias correction is further discussed.The experimental results show that the systematic bias is effectively corrected,and the following conclusions are obtained:the correction effect is improved by adding geographic information(longitude and latitude)into the predictors;under the given combination of predictors,the correction effect of XGBoost is the best,followed by random forest,and finally offline method,but the three methods can correct the bias effectively;compared with long wave data of FY-4 A/GIIRS,machine learning may be more feasible for medium wave data bias correction.
文摘Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissions scenarios.This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical(1980−2005)temperature simulations over East Asia.Future(2006−49)temperature trends under the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method.Results show the following:(1)The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions,especially in the Tibetan Plateau region.(2)All bias correction methods can significantly reduce the simulation biases.The quantile mapping method outperforms other bias correction methods in all RCMs,with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8%(HadGEM3-RA),63.2%(MM5),51.3%(RegCM),80.7%(YSU-RCM)and 62.0%(WRF).(3)The Bayesian model averaging(BMA)method outperforms the simple multi-model averaging(SMA)method in narrowing the uncertainty of bias-corrected results.For the spatial correlation coefficient,the improvement rate of the BMA method ranges from 2%to 31%over the 10 subregions,when compared with individual RCMs.(4)For temperature projections,the warming is significant,ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario.(5)The quantile mapping method reduces the uncertainty over all subregions by between 66%and 94%.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05040301)the National Basic Research Program of China (Grant No. 2010CB951804)the National Natural Science Foundation of China (Grant No. 41101045)
文摘Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.
基金Program of Key Laboratory of Meteorological Disaster(KLME202209)National Key R&D Program of China(2017YFC1502102)。
文摘Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.
文摘In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.
基金supported jointly by the National Natural Science Foundation of China (Grant No.42075170)the National Key Research and Development Program of China (2022YFF0802503)+2 种基金the Jiangsu Collaborative Innovation Center for Climate Changea Chinese University Direct Grant(Grant No. 4053331)supported by the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulator Facility”(EarthLab)
文摘In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three simulations were conducted with a 25-km grid spacing for the period 1980–2014.The first simulation(WRF_ERA5)was driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5)dataset and served as the validation dataset.The original GCM dataset(MPI-ESM1-2-HR model)was used to drive the second simulation(WRF_GCM),while the third simulation(WRF_GCMbc)was driven by the bias-corrected GCM dataset.The bias-corrected GCM data has an ERA5-based mean and interannual variance and long-term trends derived from the ensemble mean of 18 CMIP6 models.Results demonstrate that the WRF_GCMbc significantly reduced the root-mean-square errors(RMSEs)of the climatological mean of downscaled variables,including temperature,precipitation,snow,wind,relative humidity,and planetary boundary layer height by 50%–90%compared to the WRF_GCM.Similarly,the RMSEs of interannual-tointerdecadal variances of downscaled variables were reduced by 30%–60%.Furthermore,the WRF_GCMbc better captured the annual cycle of the monsoon circulation and intraseasonal and day-to-day variabilities.The leading empirical orthogonal function(EOF)shows a monopole precipitation mode in the WRF_GCM.In contrast,the WRF_GCMbc successfully reproduced the observed tri-pole mode of summer precipitation over eastern China.This improvement could be attributed to a better-simulated location of the western North Pacific subtropical high in the WRF_GCMbc after GCM bias correction.
基金This work was supported by the National Natural Science Foundation of China(62071378).
文摘The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method with bias correction is proposed.This method firstly introduces fractional order distance regularized term to punish the deviation between the level set function(LSF)and the signed distance function.Secondly a series of covering template is constructed to calculate fractional derivative and its conjugate of image pixel.Thirdly introducing the offset correction term and fully using the local clustering property of image intensity,the local clustering criterion of image intensity is defined and integrated with the neighborhood center to obtain the global criterion of image segmentation.Finally,the fractional distance regularization,offset correction,and external energy constraints are combined,and the energy optimization segmentation method for noisy image is established by level set.Experimental results show that the proposed method can accurately segment the image,and effectively improve the efficiency and robustness of exiting state of the art level set related algorithms.
基金Supported by the National "973" Project (2009CB421500)the National "863" Project (2007AA12Z140)+1 种基金the National 11th Five-Year Plan (2006BAC02B01)the Demonstration Project for Polar Orbiting Satellite FY-3 (0806FiDF106)
文摘The variational assimilation theory is generally based on unbiased observations. In practice, however, almost all observations suffer from biases arising from observational instruments, radiative transfer operator, precondition of data, and so on. Therefore, a bias correction scheme is indispensable. The current scheme for radiance bias correction in the GRAPES 3DVar system is an offline scheme. It is actually a static correction for the radiance bias before the process of cost function minimization. In consideration of its effects on forecast results, this kind of scheme has some shortcomings. Thus, this study provides a variational bias correction (VarBC) scheme for the GRAPES 3DVar system following Dee’s idea. In the VarBC scheme, the observation operator is modified and a new control variable is defined by taking the predictor coefficients as the control parameters. According to the feature of the GRAPES-3DVAR, an incremental formulation is applied and the original bias correction scheme is maintained in the actual process of observations. The VarBC is designed to co-exist with the original scheme, because it is a dynamic revision to the observational operator on the basis of the old method, i.e., it adjusts the model state vector along with the control parameters to an unbiased state in the process of minimization and the assimilation system remains consistent with available information automatically. Preliminary experimental results show that the mean departures of background-minus-observation and analysis-minus-observation are reduced as expected. In a case study of the heavy rainfall that happened in South China on 11–13 June 2008, the 500-hPa geopotential height is better simulated using the analyzed field from the VarBC as the initial condition.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 41305099)
文摘A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.
基金supported by National Key R&D Program of China(Technology and application of wind power/photovoltaic power prediction for promoting renewable energy consumption,2018YFB0904200)eponymous Complement S&T Program of State Grid Corporation of China(SGLNDKOOKJJS1800266).
文摘Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalman filter (KF) is applied to 72-h wind speed forecasts from the WRF model in Zhangbei wind farm for a period over two years. The KF approach shows a remarkable ability in improving the raw forecasts by decreasing the root-mean-square error by 16% from 3.58 to 3.01 m s−1, the mean absolute error by 14% from 2.71 to 2.34 m s−1, the bias from 0.22 to − 0.19 m s−1, and improving the correlation from 0.58 to 0.66. The KF significantly reduces random errors of the model, showing the capability to deal with the forecast errors associated with physical processes which cannot be accurately handled by the numerical model. In addition, the improvement of the bias correction is larger for wind speeds sensitive to wind power generation. So the KF approach is suitable for short-term wind power prediction.
基金Under the auspices of National Natural Science Foundation of China(No.42030501,41877148,41501016,41530752)Scherer Endowment Fund of Department of Geography,Western Michigan University and the Fundamental Research Funds for the Central Universities(No.lzujbky-2019-98)。
文摘Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study compares and evaluates two kinds of precipitation datasets,the reanalysis product downscaled by the Weather Research and Forecasting(WRF)output,and the satellite product,the Tropical Rainfall Measuring Mission(TRMM)Multisatellite Precipitation Analysis(TMPA)product,as well as their bias-corrected datasets in the Middle Qilian Mountain in Northwest China.Results show that the WRF output with finer resolution perfonns well in both estimating precipitation and hydrological simulation,while the TMPA product is unreliable in high mountainous areas.Moreover,bias-corrected WRF output also performs better than bias-corrected TMPA product.Combined with the previous studies,atmospheric reanalysis datasets are more suitable than the satellite products in high mountainous areas.Climate is more important than altitude for the\falseAlarms'events of the TRMM product.Designed to focus on the tropical areas,the TMPA product mistakes certain meteorological situations for precipitation in subhumid and semiarid areas,thus causing significant"falseAlarms"events and leading to significant overestimations and unreliable performance.Simple linear bias correction method,only removing systematical errors,can significantly improves the accuracy of both the WRF output and the TMPA product in arid high mountainous areas with data scarcity.Evaluated by hydrological simulations,the bias-corrected WRF output is more reliable than the gauge dataset.Thus,data merging of the WRF output and gauge observations would provide more reliable precipitation estimations in arid high mountainous areas.
文摘<p align="justify"> <span style="font-family:Verdana;">This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data used comprised station-based monthly gridded rainfall data sourced from the Climate Research </span><span style="font-family:Verdana;">Unit (CRU) and monthly model outputs from the Fourth Edition of the Rossby Centre (RCA4) Regional Climate Model (RCM), which has scaled-down </span><span style="font-family:Verdana;">nine GCMs for Africa. Although the 9 Global Climate Models (GCMs) downscaled by the RCA4 model was not very good at simulating rainfall in Kenya, the ensemble of the 9 models performed better and could be used for further studies. The ensemble of the models was thus bias-corrected using the scaling method to reduce the error;lower values of bias and Normalized Root Mean Square Error (NRMSE) w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> recorded when compared to the uncorrected models. The bias-corrected ensemble was used to study the spatial and temporal behaviour of rainfall under baseline (1971 to 2000) and future RCP 4.5 and 8.5 scenarios (2021 to 2050). An insignificant trend was noted under the </span><span style="font-family:Verdana;">baseline condition during the March-May (MAM) and October-December</span> <span style="font-family:Verdana;">(OND) rainfall seasons. A positive significant trend at 5% level was noted</span><span style="font-family:Verdana;"> under RCP 4.5 and 8.5 scenarios in some stations during both MAM and OND seasons. The increase in rainfall was attributed to global warming due to increased anthropogenic emissions of greenhouse gases. Results on the spatial variability of rainfall indicate the spatial extent of rainfall will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the baseline;the increase is higher under the RCP 8.5 scenario. Overall rainfall was found to be highly variable in space and time, there is a need to invest in the early dissemination of weather forecasts to help farmers adequately prepare in case of unfavorable weather. Concerning the expected increase in rainfall in the future, policymakers need to consider the results of this study while preparing mitigation strategies against the effects of changing rainfall patterns.</span></span> </p>
基金supported by the project of Shandong Provincial National Science Foundation for Distinguished Young Scholars(Grant No.JQ201113)SDUST's National Science Foundation for Distinguished Young Scholars(Grant No.2010KYJQ102)
文摘Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.