A comprehensive study of the negative and positive bias temperature instability(NBTI/PBTI)of 3D FinFET devices with different small channel lengths is presented.It is found while with the channel lengths shrinking fro...A comprehensive study of the negative and positive bias temperature instability(NBTI/PBTI)of 3D FinFET devices with different small channel lengths is presented.It is found while with the channel lengths shrinking from 100 nm to 30 nm,both the NBTI characteristics of p-FinFET and PBTI characteristics of n-FinFET turn better.Moreover,the channel length dependence on NBTI is more serious than that on PBTI.Through the analysis of the physical mechanism of BTI and the simulation of 3-D stress in the FinFET device,a physical mechanism of the channel length dependence on NBTI/PBTI is proposed.Both extra fluorine passivation in the corner of bulk oxide and stronger channel stress in p-FinFETs with shorter channel length causes less NBTI issue,while the extra nitrogen passivation in the corner of bulk oxide induces less PBTI degradation as the channel length decreasing for n-FinFETs.The mechanism well matches the experimental result and provides one helpful guide for the improvement of reliability issues in the advanced FinFET process.展开更多
In this article,the body bias dependence of the bias temperature instability(BTI)in bulk FinFETs is experimentally studied,under different test conditions for the first time.In contrast to the traditional understandin...In this article,the body bias dependence of the bias temperature instability(BTI)in bulk FinFETs is experimentally studied,under different test conditions for the first time.In contrast to the traditional understanding that changing body bias has little impact on BTI degradation in FinFETs due to its weak body effect,it is observed that it actually has non-negligible impacts.And a forward body bias(FBB)can reduce the BTI degradation in FinFETs,which is opposite with the trend in planar devices.The underlying physics is found due to the trade-off between two competing factors.The results are helpful for understanding and modeling reliability in FinFETs.展开更多
Complementary metal oxide semiconductor(CMOS)aging mechanisms including bias temperature instability(BTI)pose growing concerns about circuit reliability.BTI results in threshold voltage increases on CMOS transistors,c...Complementary metal oxide semiconductor(CMOS)aging mechanisms including bias temperature instability(BTI)pose growing concerns about circuit reliability.BTI results in threshold voltage increases on CMOS transistors,causing delay shifts and timing violations on logic circuits.The amount of degradation is dependent on the circuit workload,which increases the challenge for accurate BTI aging prediction at the design time.In this paper,a BTI prediction method for logic circuits based on statistical static timing analysis(SSTA)is proposed,especially considering the correlation between circuit workload and BTI degradation.It consists of a training phase,to discover the relationship between circuit scale and the required workload samples,and a prediction phase,to present the degradations under different workloads in Gaussian probability distributions.This method can predict the distribution of degradations with negligible errors,and identify 50%more BTI-critical paths in an affordable time,compared with conventional methods.展开更多
基金the Science and Technology Program of Beijing Municipal Science and Technology Commission,China(Grant No.Z201100004220001)the National Major Project of Science and Technology of China(Grant No.2017ZX02315001)the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences(Grant Nos.Y9YS05X002 and E0YS01X001).
文摘A comprehensive study of the negative and positive bias temperature instability(NBTI/PBTI)of 3D FinFET devices with different small channel lengths is presented.It is found while with the channel lengths shrinking from 100 nm to 30 nm,both the NBTI characteristics of p-FinFET and PBTI characteristics of n-FinFET turn better.Moreover,the channel length dependence on NBTI is more serious than that on PBTI.Through the analysis of the physical mechanism of BTI and the simulation of 3-D stress in the FinFET device,a physical mechanism of the channel length dependence on NBTI/PBTI is proposed.Both extra fluorine passivation in the corner of bulk oxide and stronger channel stress in p-FinFETs with shorter channel length causes less NBTI issue,while the extra nitrogen passivation in the corner of bulk oxide induces less PBTI degradation as the channel length decreasing for n-FinFETs.The mechanism well matches the experimental result and provides one helpful guide for the improvement of reliability issues in the advanced FinFET process.
基金supported by NSFC(61874005,61927901)the 111 Project(B18001).
文摘In this article,the body bias dependence of the bias temperature instability(BTI)in bulk FinFETs is experimentally studied,under different test conditions for the first time.In contrast to the traditional understanding that changing body bias has little impact on BTI degradation in FinFETs due to its weak body effect,it is observed that it actually has non-negligible impacts.And a forward body bias(FBB)can reduce the BTI degradation in FinFETs,which is opposite with the trend in planar devices.The underlying physics is found due to the trade-off between two competing factors.The results are helpful for understanding and modeling reliability in FinFETs.
基金3the High Performance Computing Center of Shanghai University,Shanghai Engineering Research Center of Intelligent Computing System(19DZ2252600)supported by State Key Laboratory of Computer Architecture(Institute of Computing Technology,Chinese Academy of Sciences)(CARCH201909)。
文摘Complementary metal oxide semiconductor(CMOS)aging mechanisms including bias temperature instability(BTI)pose growing concerns about circuit reliability.BTI results in threshold voltage increases on CMOS transistors,causing delay shifts and timing violations on logic circuits.The amount of degradation is dependent on the circuit workload,which increases the challenge for accurate BTI aging prediction at the design time.In this paper,a BTI prediction method for logic circuits based on statistical static timing analysis(SSTA)is proposed,especially considering the correlation between circuit workload and BTI degradation.It consists of a training phase,to discover the relationship between circuit scale and the required workload samples,and a prediction phase,to present the degradations under different workloads in Gaussian probability distributions.This method can predict the distribution of degradations with negligible errors,and identify 50%more BTI-critical paths in an affordable time,compared with conventional methods.