Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error...Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.展开更多
An automated cumulative sampling system and a method that combines a two-step cryo-concentrated system and gas chromatography/mass spectrometry (CCS-GC/MS) are introduced. The method is evaluated by a set of special...An automated cumulative sampling system and a method that combines a two-step cryo-concentrated system and gas chromatography/mass spectrometry (CCS-GC/MS) are introduced. The method is evaluated by a set of special experiments and the results are presented. The lowest measurement detection limit was expanded from 10^-6 nmol mol^-1 to 10^-12 nmol mol^-1 by using CCS-GC/MS instead of the simpler method of gas chromatography/mass spectrometry (GC/MS), with the average responsible factor of 39 object compounds being 2.9 × 10^-12. When the volume of air sample reached 1000 cm^3, the lowest detection limit reached up to 7 × 10^-12-40 × 10^-12 nmol mol^-1. The CCS-GC/MS method can potentially identify all objective chemical species in an atmospheric sample, with an average 2.5 s bias error of retention time for 39 gas chromatography (GC) peaks. Within the range 0-400×10^-9 nmol mol^-1, the concentration of 39 kinds of objective compounds can be individually calculated very accurately by a standard curve [average r^2 (coefficient of determination) value of above 0.99]. The recovery efficiency was 88%-111%, with an average of 100.8% ±5.6%. The bias error of precision was 2%-14%, with an average of 6.6%.展开更多
The main objective of this research is to analyze the monthly average daily of global (H), beams (B) and diffuses (D) solar irradiance on a horizontal surface at four selected sites (El-Kharga, Hurghada in Egypt and D...The main objective of this research is to analyze the monthly average daily of global (H), beams (B) and diffuses (D) solar irradiance on a horizontal surface at four selected sites (El-Kharga, Hurghada in Egypt and Dammam, Hail in Saudi Arabia) during the period time from 1980 to 2020. The empirical models between (H/H<sub>o</sub>) and meteorological parameters along with the values of (MBE), (RMSE), MPE, R<sup>2</sup> and the t-Test statics are discussed. The results in this study indicate good agreement between observed and calculated values of total solar energy and diffuse solar fraction. The results for south facing surfaces of the (RMSE) for different slope at different models in the present research are discussions. Nine different models between isotropic and anisotropic used to estimate the diffuse solar radiation on a tilted surface at selected sites in this study. The absolute relative values of RMSE for the south-facing surface ranges from 7 to 41.3 at El-Kharga and Hurghada sites, Egypt in the present study for Koronakis and Stevenand Unsworth (SU) models respectively. The values of (RMSE), for the south-facing surface ranges from 9.3 to 39.7 at Dammam and Hail sites, Saudi Arabia in the present research for Koronakis and Klucher models respectively. For west-facing surface the values of RMSE range from 11.2 to 47.3 for Badescu and Koronakis models at El-Kharga and Hurghada sites, Egypt respectively, while values of RMSE range from 6.5 to 38.5 for Klucher and Reindl et al. models at Dammam and Hail sites, Saudi Arabia. The models Koronakis, Klucher and Stevenand Unsworth (SU) models are given the most accurate estimate for the south-facing surface, and Badescu, Koronakis, Klucher and Reindl et al. models are good performs better estimated for the west-facing surface.展开更多
Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming ...Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.展开更多
The ionosphere is one of the major error sources in Global Navigation Satellite System (GNSS) posi- tioning, navigation and timing. Estimating the ionospheric delays precisely is of great interest in the GNSS commun...The ionosphere is one of the major error sources in Global Navigation Satellite System (GNSS) posi- tioning, navigation and timing. Estimating the ionospheric delays precisely is of great interest in the GNSS community. To date, GNSS observables for ionospheric estimation are most commonly based on carrier phase smoothed code measurements. However, leveling errors, which affect the performance of ionospheric modeling and differential code bias (DCB) estimation, exist in the carrier phase smoothed code observations. Such leveling errors are caused by the multipath and the short-term variation of DCB. To reduce these leveling errors, this paper investigates and estimates the ionospheric delays based on carrier phase measurements without the leveling errors. The line-of-sight ionospheric observables with high precision are calculated using precise point positioning (PPP) techniques, in which carrier phase measurements are the principal observables. Ionosphere-free and UofC PPP models are applied and compared for their effectiveness to minimize the leveling errors. To assess the leveling errors, single difference of ionospheric observables for a short baseline is examined. Results show that carrier phase- derived ionospheric observables from PPP techniques can effectively reduce the leveling errors. Furthermore, we compared the PPP ionosphere estimation model with the conventional carrier phase smoothed code method to assess the bias consistency and investigate the biases in the ionospheric observables.展开更多
Sediment-laden flow measurement with Particle Tracking Velocimetry (PTV) introduces a series of finite-sized sampling bins along the vertical of the flow. Instantaneous velocities are collected at each bin and a sig...Sediment-laden flow measurement with Particle Tracking Velocimetry (PTV) introduces a series of finite-sized sampling bins along the vertical of the flow. Instantaneous velocities are collected at each bin and a significantly large sample is established to evaluate mean and root mean square (rms) velocities of the flow. Due to the presence of concentration gradient, the established sample for the solid phase involves more data from the lower part of the sampling bin than from the upper part. The concentration effect causes bias errors in the measured mean and rms velocities when velocity varies across the bin. These bias errors are analyti- cally quantified in this study based on simplified linear velocity and concentration distributions. Typical bulk flow characteristics from sediment-laden flow measurements are used to demonstrate rough estimation of the error magnitude. Results indicate that the mean velocity is underestimated while the rms velocity is overestimated in the ensemble-averaged measurement. The extent of devia- tion is commensurate with the bin size and the rate of concentration gradient. Procedures are proposed to assist determining an appro- priate sampling bin size in certain error limits.展开更多
There are many possible bias errors in the measurement of structural intensity and some of them have been theoretically examined. Attempting to analyse all the bias errors at the same time results in a very complicate...There are many possible bias errors in the measurement of structural intensity and some of them have been theoretically examined. Attempting to analyse all the bias errors at the same time results in a very complicated analysis and makes it difficult to draw clear conclusions.The bias errors are usually analysed individually. In this paper a theoretical study of three bias errors in the measurement of structural intensity is presented by using the twor-accelerometer array technique. It is assumed that the physical and material properties of the test structure are known. The analysis will be restricted to one-dimensional beams, but it can be extended to two-dimensional plates.展开更多
Constant fraction discriminator (CFD) is one of theoretic method which can locate timing point at same fraction of echo pulse in pulsed time-of-flight (TOF) laser rangefinding. In this paper, the theory of CFD met...Constant fraction discriminator (CFD) is one of theoretic method which can locate timing point at same fraction of echo pulse in pulsed time-of-flight (TOF) laser rangefinding. In this paper, the theory of CFD method was analyzed in reality condition. The design, simulation and printed-circuit-board (PCB) performance of CFD circuit were shown. Finally, an over amplified method was introduced, by which the influence of direct-current (DC) bias error could be reduced. The experimental results showed that timing discriminator could set the timing point to a certain point on echo pulse, which did not depend on the amplitude of echo pulse.展开更多
文摘Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.
文摘An automated cumulative sampling system and a method that combines a two-step cryo-concentrated system and gas chromatography/mass spectrometry (CCS-GC/MS) are introduced. The method is evaluated by a set of special experiments and the results are presented. The lowest measurement detection limit was expanded from 10^-6 nmol mol^-1 to 10^-12 nmol mol^-1 by using CCS-GC/MS instead of the simpler method of gas chromatography/mass spectrometry (GC/MS), with the average responsible factor of 39 object compounds being 2.9 × 10^-12. When the volume of air sample reached 1000 cm^3, the lowest detection limit reached up to 7 × 10^-12-40 × 10^-12 nmol mol^-1. The CCS-GC/MS method can potentially identify all objective chemical species in an atmospheric sample, with an average 2.5 s bias error of retention time for 39 gas chromatography (GC) peaks. Within the range 0-400×10^-9 nmol mol^-1, the concentration of 39 kinds of objective compounds can be individually calculated very accurately by a standard curve [average r^2 (coefficient of determination) value of above 0.99]. The recovery efficiency was 88%-111%, with an average of 100.8% ±5.6%. The bias error of precision was 2%-14%, with an average of 6.6%.
文摘The main objective of this research is to analyze the monthly average daily of global (H), beams (B) and diffuses (D) solar irradiance on a horizontal surface at four selected sites (El-Kharga, Hurghada in Egypt and Dammam, Hail in Saudi Arabia) during the period time from 1980 to 2020. The empirical models between (H/H<sub>o</sub>) and meteorological parameters along with the values of (MBE), (RMSE), MPE, R<sup>2</sup> and the t-Test statics are discussed. The results in this study indicate good agreement between observed and calculated values of total solar energy and diffuse solar fraction. The results for south facing surfaces of the (RMSE) for different slope at different models in the present research are discussions. Nine different models between isotropic and anisotropic used to estimate the diffuse solar radiation on a tilted surface at selected sites in this study. The absolute relative values of RMSE for the south-facing surface ranges from 7 to 41.3 at El-Kharga and Hurghada sites, Egypt in the present study for Koronakis and Stevenand Unsworth (SU) models respectively. The values of (RMSE), for the south-facing surface ranges from 9.3 to 39.7 at Dammam and Hail sites, Saudi Arabia in the present research for Koronakis and Klucher models respectively. For west-facing surface the values of RMSE range from 11.2 to 47.3 for Badescu and Koronakis models at El-Kharga and Hurghada sites, Egypt respectively, while values of RMSE range from 6.5 to 38.5 for Klucher and Reindl et al. models at Dammam and Hail sites, Saudi Arabia. The models Koronakis, Klucher and Stevenand Unsworth (SU) models are given the most accurate estimate for the south-facing surface, and Badescu, Koronakis, Klucher and Reindl et al. models are good performs better estimated for the west-facing surface.
基金A part of the projects titled "Development of Korea Operational Oceanographic System(KOOS),Phase 2","Construction of Ocean Research Stations and their Application Studies","Development of Environmental Information System for NSR Navigation" funded by the Ministry of Oceans and Fisheries,Korea,and "Development of fundamental technology for coastal erosion control" of KIOST
文摘Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.
文摘The ionosphere is one of the major error sources in Global Navigation Satellite System (GNSS) posi- tioning, navigation and timing. Estimating the ionospheric delays precisely is of great interest in the GNSS community. To date, GNSS observables for ionospheric estimation are most commonly based on carrier phase smoothed code measurements. However, leveling errors, which affect the performance of ionospheric modeling and differential code bias (DCB) estimation, exist in the carrier phase smoothed code observations. Such leveling errors are caused by the multipath and the short-term variation of DCB. To reduce these leveling errors, this paper investigates and estimates the ionospheric delays based on carrier phase measurements without the leveling errors. The line-of-sight ionospheric observables with high precision are calculated using precise point positioning (PPP) techniques, in which carrier phase measurements are the principal observables. Ionosphere-free and UofC PPP models are applied and compared for their effectiveness to minimize the leveling errors. To assess the leveling errors, single difference of ionospheric observables for a short baseline is examined. Results show that carrier phase- derived ionospheric observables from PPP techniques can effectively reduce the leveling errors. Furthermore, we compared the PPP ionosphere estimation model with the conventional carrier phase smoothed code method to assess the bias consistency and investigate the biases in the ionospheric observables.
基金supported by the National Natural Science Foundation of China(Grant No.50779023)
文摘Sediment-laden flow measurement with Particle Tracking Velocimetry (PTV) introduces a series of finite-sized sampling bins along the vertical of the flow. Instantaneous velocities are collected at each bin and a significantly large sample is established to evaluate mean and root mean square (rms) velocities of the flow. Due to the presence of concentration gradient, the established sample for the solid phase involves more data from the lower part of the sampling bin than from the upper part. The concentration effect causes bias errors in the measured mean and rms velocities when velocity varies across the bin. These bias errors are analyti- cally quantified in this study based on simplified linear velocity and concentration distributions. Typical bulk flow characteristics from sediment-laden flow measurements are used to demonstrate rough estimation of the error magnitude. Results indicate that the mean velocity is underestimated while the rms velocity is overestimated in the ensemble-averaged measurement. The extent of devia- tion is commensurate with the bin size and the rate of concentration gradient. Procedures are proposed to assist determining an appro- priate sampling bin size in certain error limits.
文摘There are many possible bias errors in the measurement of structural intensity and some of them have been theoretically examined. Attempting to analyse all the bias errors at the same time results in a very complicated analysis and makes it difficult to draw clear conclusions.The bias errors are usually analysed individually. In this paper a theoretical study of three bias errors in the measurement of structural intensity is presented by using the twor-accelerometer array technique. It is assumed that the physical and material properties of the test structure are known. The analysis will be restricted to one-dimensional beams, but it can be extended to two-dimensional plates.
基金This work was sponsored by the National Natural Science Foundation of China (Grant No. 40801123).
文摘Constant fraction discriminator (CFD) is one of theoretic method which can locate timing point at same fraction of echo pulse in pulsed time-of-flight (TOF) laser rangefinding. In this paper, the theory of CFD method was analyzed in reality condition. The design, simulation and printed-circuit-board (PCB) performance of CFD circuit were shown. Finally, an over amplified method was introduced, by which the influence of direct-current (DC) bias error could be reduced. The experimental results showed that timing discriminator could set the timing point to a certain point on echo pulse, which did not depend on the amplitude of echo pulse.