期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Biased Partitions and Judicious k-Partitions of Graphs
1
作者 Qing Hou ZENG Jian Feng HOU +1 位作者 Jin DENG Xia LEI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第5期668-680,共13页
Let G =(V, E) be a graph with m edges. For reals p ∈ [0, 1] and q = 1-p, let m;(G) be the minimum of qe(V;) + pe(V;) over partitions V = V;∪ V;, where e(V;) denotes the number of edges spanned by V;. We sh... Let G =(V, E) be a graph with m edges. For reals p ∈ [0, 1] and q = 1-p, let m;(G) be the minimum of qe(V;) + pe(V;) over partitions V = V;∪ V;, where e(V;) denotes the number of edges spanned by V;. We show that if m;(G) = pqm-δ, then there exists a bipartition V;, V;of G such that e(V;) ≤ p;m-δ + p(m/2);+ o(√m) and e(V;) ≤ q;m-δ + q(m/2);+ o(√m) for δ = o(m;). This is sharp for com;lete graphs up to the error term o(√m). For an integer k ≥ 2, let fk(G) denote the maximum number of edges in a k-partite subgraph of G. We prove that if fk(G) =(1-1/k)m + α,then G admits a k-partition such that each vertex class spans at most m/k;-Ω(m/k;) edges forα = Ω(m/k;). Both of the above im;rove the results of Bollob′as and Scott. 展开更多
关键词 GRAPH MAX-CUT biased partition judicious partition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部