期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks 被引量:2
1
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第1期32-37,共6页
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode... Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs). 展开更多
关键词 Standard neural network model (SNNM) bidirectional associative memory (BAM) neural network Linear matrix inequality (LMI) Linear differential inclusion (LDI) Global asymptotic stability
下载PDF
Robust asymptotic stability for BAM neural networks with time-varying delays via LMI approach
2
作者 LIU Jia ZONG Guang-deng ZHANG Yun-xi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第3期282-290,共9页
Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix... Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results. 展开更多
关键词 robust asymptotic stability bidirectional associative memory (BAM) neural networks timevarying delays linear matrix inequality(LMI) Lyapunov-Krasovskii functional
下载PDF
Global stability of bidirectional associative memory neural networks with continuously distributed delays 被引量:5
3
作者 张强 马润年 许进 《Science in China(Series F)》 2003年第5期327-334,共8页
Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, t... Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method. 展开更多
关键词 global asymptotic stability bidirectional associative memory neural networks continuously distributed delays.
原文传递
EXPONENTIAL STABILITY AND PERIODIC SOLUTION OF HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS
4
作者 谢惠琴 王全义 《Annals of Differential Equations》 2004年第3期312-320,共9页
In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By inge... In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1,2, …, n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application. 展开更多
关键词 hybrid bidirectional associative memory neural networks periodic solution EQUILIBRIUM global exponential stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部