期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
Traditional Chinese Medicine Synonymous Term Conversion:A Bidirectional Encoder Representations from Transformers-Based Model for Converting Synonymous Terms in Traditional Chinese Medicine
1
作者 Lu Zhou Chao-Yong Wu +10 位作者 Xi-Ting Wang Shuang-Qiao Liu Yi-Zhuo Zhang Yue-Meng Sun Jian Cui Cai-Yan Li Hui-Min Yuan Yan Sun Feng-Jie Zheng Feng-Qin Xu Yu-Hang Li 《World Journal of Traditional Chinese Medicine》 CAS CSCD 2023年第2期224-233,共10页
Background:The medical records of traditional Chinese medicine(TCM)contain numerous synonymous terms with different descriptions,which is not conducive to computer-aided data mining of TCM.However,there is a lack of m... Background:The medical records of traditional Chinese medicine(TCM)contain numerous synonymous terms with different descriptions,which is not conducive to computer-aided data mining of TCM.However,there is a lack of models available to normalize synonymous TCM terms.Therefore,construction of a synonymous term conversion(STC)model for normalizing synonymous TCM terms is necessary.Methods:Based on the neural networks of bidirectional encoder representations from transformers(BERT),four types of TCM STC models were designed:Models based on BERT and text classification,text sequence generation,named entity recognition,and text matching.The superior STC model was selected on the basis of its performance in converting synonymous terms.Moreover,three misjudgment inspection methods for the conversion results of the STC model based on inconsistency were proposed to find incorrect term conversion:Neuron random deactivation,output comparison of multiple isomorphic models,and output comparison of multiple heterogeneous models(OCMH).Results:The classification-based STC model outperformed the other STC task models.It achieved F1 scores of 0.91,0.91,and 0.83 for performing symptoms,patterns,and treatments STC tasks,respectively.The OCMH method showed the best performance in misjudgment inspection,with wrong detection rates of 0.80,0.84,and 0.90 in the term conversion results for symptoms,patterns,and treatments,respectively.Conclusion:The TCM STC model based on classification achieved superior performance in converting synonymous terms for symptoms,patterns,and treatments.The misjudgment inspection method based on OCMH showed superior performance in identifying incorrect outputs. 展开更多
关键词 bidirectional encoder representations from transformers misjudgment inspection synonymous term conversion traditional Chinesem edicine
原文传递
Text Augmentation-Based Model for Emotion Recognition Using Transformers
2
作者 Fida Mohammad Mukhtaj Khan +4 位作者 Safdar Nawaz Khan Marwat Naveed Jan Neelam Gohar Muhammad Bilal Amal Al-Rasheed 《Computers, Materials & Continua》 SCIE EI 2023年第9期3523-3547,共25页
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally intelligentmachines.Graph-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC tasks.However,their... Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally intelligentmachines.Graph-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC tasks.However,their limited ability to collect and acquire contextual information hinders their effectiveness.We propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address this.The proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human emotions.Themodel used text augmentation techniques to producemore training data,improving the proposed model’s accuracy.Transformer encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual information.This integration improves the accuracy and robustness of the proposed model.Furthermore,we present a method for balancing the training dataset by creating enhanced samples from the original dataset.By balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed model.Experimental results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ERC.TA-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based encoding.The balanced dataset and the additional training samples also enhance its resilience.These findings highlight the significance of transformer-based approaches for special emotion recognition in conversations. 展开更多
关键词 Emotion recognition in conversation graph-based network text augmentation-basedmodel multimodal emotion lines dataset bidirectional encoder representation for transformer
下载PDF
Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter
3
作者 R.Sujatha K.Nimala 《Computers, Materials & Continua》 SCIE EI 2024年第2期1669-1686,共18页
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir... Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88. 展开更多
关键词 bidirectional encoder for representation of transformer conversation ensemble model fine-tuning generalized autoregressive pretraining for language understanding generative pre-trained transformer hyperparameter tuning natural language processing robustly optimized BERT pretraining approach sentence classification transformer models
下载PDF
Enhancing Arabic Cyberbullying Detection with End-to-End Transformer Model
4
作者 Mohamed A.Mahdi Suliman Mohamed Fati +2 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1651-1671,共21页
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online spaces.To tackle this challenge,our study introduces a ... Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online spaces.To tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in English.This model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection methods.Our model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing methods.Experimental results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities. 展开更多
关键词 CYBERBULLYING offensive detection bidirectional encoder representations from the transformers(BERT) continuous bag of words Social Media natural language processing
下载PDF
基于BERT与生成对抗的民航陆空通话意图挖掘 被引量:1
5
作者 马兰 孟诗君 吴志军 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期740-750,共11页
针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transf... 针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transformers,BERT)与生成对抗网络(generative adversarial network,GAN)的陆空通话意图信息挖掘方法,并引入航班池信息对提取的部分信息进行校验修正,形成空中交通管制(air traffic control,ATC)系统可理解的结构化信息。首先,使用改进的GAN模型进行陆空通话智能文本生成,可有效进行数据增强,平衡各类实体信息分布并扩充数据集;然后,根据欧洲单一天空空中交通管理项目定义的本体规则进行意图的分类与标注;之后,通过BERT预训练模型生成字向量并解决一词多义问题,利用双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络双向编码提取上下句语义特征,同时将该语义特征送入条件随机场(conditional random field,CRF)模型进行推理预测,学习标签的依赖关系并加以约束,以获取全局最优结果;最后,根据编辑距离(edit distance,ED)算法进行意图信息合理性校验与修正。对比实验结果表明,所提方法的宏平均F_(1)值达到了98.75%,在民航陆空通话数据集上的意图挖掘性能优于其他主流模型,为其加入数字化进程奠定了基础。 展开更多
关键词 民航陆空通话 信息提取 生成对抗网络 本体 双向转换编码器
下载PDF
多模态特征的越南语语音识别文本标点恢复
6
作者 赖华 孙童 +3 位作者 王文君 余正涛 高盛祥 董凌 《计算机应用》 CSCD 北大核心 2024年第2期418-423,共6页
越南语语音识别系统输出的文本序列缺少标点符号,恢复识别文本标点有助于消除歧义,更易于阅读和理解。越南语语音识别文本中常出现破坏语义的错误音节,基于文本模态的标点恢复模型在识别带噪文本时存在标点预测不准确的问题。利用越南... 越南语语音识别系统输出的文本序列缺少标点符号,恢复识别文本标点有助于消除歧义,更易于阅读和理解。越南语语音识别文本中常出现破坏语义的错误音节,基于文本模态的标点恢复模型在识别带噪文本时存在标点预测不准确的问题。利用越南语语音中的语气停顿及声调变化指导模型对带噪文本作出正确的标点预测,提出多模态特征的越南语语音识别文本标点恢复方法,利用梅尔倒谱系数(MFCC)提取语音特征,利用预训练语言模型提取文本上下文特征,基于标签注意力机制实现语音与文本多模态特征融合,增强模型对越南语带噪文本上下文信息的学习能力。实验结果表明,相较于基于Transformer和BERT提取文本单一模态特征的标点恢复模型,所提方法在越南语数据集上精确率、召回率和F1值均至少提高10个百分点,验证了融合语音与文本特征对提升越南语语音识别带噪文本标点预测精确率的有效性。 展开更多
关键词 语音识别 标点恢复 越南语 BERT 多模态
下载PDF
基于层间融合滤波器与社交神经引文网络的推荐算法
7
作者 杨兴耀 李志林 +3 位作者 张祖莲 于炯 陈嘉颖 王东晓 《计算机工程》 CAS CSCD 北大核心 2024年第11期98-106,共9页
推荐算法是一种用于解决信息过载问题的方法,引文推荐通过引文上下文能够自动匹配候选论文列表。现有基于神经引文网络模型在引文上下文数据预处理的过程中,存在文本噪声和上下文学习不充分的问题。为此,提出一种基于层间融合滤波器和... 推荐算法是一种用于解决信息过载问题的方法,引文推荐通过引文上下文能够自动匹配候选论文列表。现有基于神经引文网络模型在引文上下文数据预处理的过程中,存在文本噪声和上下文学习不充分的问题。为此,提出一种基于层间融合滤波器和社交神经引文网络的推荐算法FS-Rec。首先,利用具有层间融合滤波器的BERT模型预处理引文上下文,在频域内从所有频率中提取有意义的特征,缓解引文上下文数据的噪声,同时在频域中对多层信息进行融合,增强上下文表示学习的能力;然后,在引文作者嵌入中引入社交关系,与其他引文信息嵌入通过编码器获得表示,将这些表示与经过BERT预训练的引文上下文表示进行融合,得到最终表示;最后,根据最终表示生成引文文本预测。实验结果表明,相较于现有的上下文引文推荐模型,FS-Rec在2个基准数据集arXivCS和PubMed取得了更高的召回率和平均倒数排名(MMR),证明了模型的有效性。 展开更多
关键词 滤波器 自注意力机制 基于transformer的双向编码器表示 引文推荐 预训练语言模型
下载PDF
基于双向编码表示转换的双模态软件分类模型
8
作者 付晓峰 陈威岐 +1 位作者 孙曜 潘宇泽 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2239-2246,共8页
针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(Mac... 针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(MacBERT)双向编码的优势,其中CodeBERT用于深入分析源码内容,MacBERT处理文本描述信息如注释和文档,利用这2种双模态信息联合生成词嵌入.结合卷积神经网络(CNN)提取局部特征,通过提出的交叉自注意力机制(CSAM)融合模型结果,实现对复杂软件系统的准确分类.实验结果表明,本文方法在同时考虑文本和源码数据的情况下精确率高达93.3%,与从奥集能和gitee平台收集并处理的数据集上训练的BERT模型和CodeBERT模型相比,平均精确率提高了5.4%.这表明了双向编码和双模态分类方法在软件分类中的高效性和准确性,证明了提出方法的实用性. 展开更多
关键词 软件分类 双向编码表示转换(BERT) 卷积神经网络 双模态 交叉自注意力机制
下载PDF
基于命名实体识别的水电工程施工安全规范实体识别模型
9
作者 陈述 张超 +2 位作者 陈云 张光飞 李智 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期19-26,共8页
为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全... 为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。 展开更多
关键词 命名实体识别 水电工程施工 安全规范 双向编码器表征法(BERT) 双向长短期记忆神经网络(BILSTM) 条件随机场(CRF)
下载PDF
基于情绪分析的生产安全事故政府责任公众感知偏差研究
10
作者 张羽 周旭 梁琦 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期203-209,共7页
为强化政府安全生产监督及行政问责公正机制,提升生产安全事故协同治理能力,利用文本挖掘技术从个体和场域2个层面出发,探索生产安全事故政府责任的公众感知偏差形成机理和影响因素。通过公众责任感知双向编码转换器(BERT-PPR)预测事故... 为强化政府安全生产监督及行政问责公正机制,提升生产安全事故协同治理能力,利用文本挖掘技术从个体和场域2个层面出发,探索生产安全事故政府责任的公众感知偏差形成机理和影响因素。通过公众责任感知双向编码转换器(BERT-PPR)预测事故微博评论的情绪和归责类型,对比事故调查结果得到政府责任的公众感知偏差,并基于二元逻辑回归考察事故信息和微博报道对感知偏差的影响。研究结果表明:采用政府形象框架以及调查结果公布阶段引发政府舆情危机的风险更高;责任人宣判阶段公众更易误判政府有责。行业、阶段、等级、形式、框架因素对生产安全事故政府责任公众感知偏差的影响不同,应采取对应措施,进而纠正相关偏差。研究结果可为安全生产领域内相关政策调整提供参考。 展开更多
关键词 生产安全事故 政府责任 感知偏差 舆情治理 情绪分析 双向编码转换器(BERT)
下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究
11
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短时记忆网络(BiLSTM)
下载PDF
利用BERT和覆盖率机制改进的HiNT文本检索模型
12
作者 邸剑 刘骏华 曹锦纲 《智能系统学报》 CSCD 北大核心 2024年第3期719-727,共9页
为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个... 为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个段提取关键主题词,然后用基于变换器的双向编码器(bidirectional encoder representations from transformers,BERT)模型将其编码为多个稠密的语义向量,再利用引入覆盖率机制的局部匹配层进行处理,使模型可以根据文档的局部段级别粒度和全局文档级别粒度进行相关性计算,提高检索的准确率。本文提出的模型在MS MARCO和webtext2019zh数据集上与多个检索模型进行对比,取得了最优结果,验证了本文提出模型的有效性。 展开更多
关键词 基于变换器的双向编码器 分层神经匹配模型 覆盖率机制 文本检索 语义表示 特征提取 自然语言处理 相似度 多粒度
下载PDF
基于改进的提示学习方法的双通道情感分析模型
13
作者 沈君凤 周星辰 汤灿 《计算机应用》 CSCD 北大核心 2024年第6期1796-1806,共11页
针对先前提示学习方法中存在的模板迭代更新周期长、泛化能力差等问题,基于改进的提示学习方法提出一种双通道的情感分析模型。首先,将序列化后的提示模板与输入词向量一起引入注意力机制结构,在输入词向量在多层注意力机制中更新的同... 针对先前提示学习方法中存在的模板迭代更新周期长、泛化能力差等问题,基于改进的提示学习方法提出一种双通道的情感分析模型。首先,将序列化后的提示模板与输入词向量一起引入注意力机制结构,在输入词向量在多层注意力机制中更新的同时迭代更新提示模板;其次,在另一通道采用ALBERT(A Lite BERT(Bidirectional Encoder Representations from Transformers))模型提取语义信息;最后,输出用集成方式提取的语义特征,提升整体模型的泛化能力。所提模型在SemEval2014的Laptop和Restaurants数据集、ACL(Association for Computational Linguistics)的Twitter数据集和斯坦福大学创建的SST-2数据集上进行实验,分类准确率达到80.88%、91.78%、76.78%和95.53%,与基线模型BERT_Large相比,分别提升0.99%、1.13%、3.39%和2.84%;与P-tuning v2相比,所提模型的分类准确率在Restaurants数据集、Twitter数据集以及SST-2数据集上分别有2.88%、3.60%和2.06%的提升,且比原方法更早达到收敛状态。 展开更多
关键词 提示学习 BERT ALBERT 对抗训练 图卷积神经网络
下载PDF
生成式标签对抗的文本分类模型
14
作者 姚迅 秦忠正 杨捷 《计算机应用》 CSCD 北大核心 2024年第6期1781-1785,共5页
文本分类是自然语言处理(NLP)中的一项基础任务,目的是将文本数据分配至预先定义的类别。图卷积神经网络(GCN)与大规模的预训练模型BERT(Bidirectional Encoder Representations from Transformer)的结合在文本分类任务中取得了良好的... 文本分类是自然语言处理(NLP)中的一项基础任务,目的是将文本数据分配至预先定义的类别。图卷积神经网络(GCN)与大规模的预训练模型BERT(Bidirectional Encoder Representations from Transformer)的结合在文本分类任务中取得了良好的效果。大规模异构图中GCN的无向的信息传递产生信息噪声影响模型的判断,造成模型分类能力下降,针对这一问题,提出一种生成式标签对抗模型,即类对抗图卷积网络(CAGCN)模型,以降低分类时无关信息的干扰,提升模型的分类性能。首先,采用TextGCN(Text Graph Convolutional Network)中的构图法构建邻接矩阵,结合GCN和BERT模型作为类生成器(CG);其次,在模型训练时采用伪标签特征训练法,并构建聚类器与类生成器联合训练;最后,在多个广泛使用的数据集上进行实验。实验结果表明,在泛用的分类数据集20NG、R8、R52、Ohsumed和MR上,CAGCN模型的分类准确率比RoBERTaGCN模型分别提高了1.2、0.1、0.5、1.7和0.5个百分点。 展开更多
关键词 文本分类 图卷积神经网络 BERT 伪标签 异构图
下载PDF
BTM-BERT模型在民航机务维修安全隐患自动分类中的应用
15
作者 陈芳 张亚博 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4366-4373,共8页
为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行... 为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行监管”等12类安全隐患。最后,根据BTM主题模型标注的数据集对算法进行微调,构建了基于变换器的双向编码(Bidirectional Encoder Representations from Transformers,BERT)算法的机务维修安全隐患记录自动分类模型,并与传统的分类算法进行对比。结果表明:所构建的模型可以实现民航机务维修安全隐患自动分类,其效果远高于传统机器学习支持向量机算法的效果,构建的分类模型的精确率、召回率和F 1较文本卷积神经网络算法分别提升了0.12、0.14和0.14,总体准确率达到了93%。 展开更多
关键词 安全工程 机务维修 词对主题模型(BTM) 基于变换器的双向编码(BERT) 安全隐患 文本分类
下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
16
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
ALBERT预训练模型在医疗文书命名实体识别中的应用研究
17
作者 庞秋奔 李银 《信息与电脑》 2024年第6期152-156,共5页
中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transform... 中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transformers,ALBERT)预训练模型微调数据集和Tranfomers中的trainer训练器训练模型的方法,实现在医疗手术麻醉文书上识别手术麻醉事件命名实体与获取复杂麻醉医疗质量控制指标值。文章为医疗手术麻醉文书命名实体识别提供了可借鉴的思路,并且为计算复杂麻醉医疗质量控制指标值提供了一种新的解决方案。 展开更多
关键词 命名实体识别 轻量级来自transformer的双向编码器表示(ALBERT)模型 transformers 麻醉医疗质量控制指标 医疗手术麻醉文书
下载PDF
融合音素的缅甸语语音识别文本纠错
18
作者 陈璐 董凌 +3 位作者 王文君 王剑 余正涛 高盛祥 《计算机工程与科学》 CSCD 北大核心 2024年第6期1121-1127,共7页
缅甸语语音识别文本中包含大量的同音和空格错误,使用通用的文本语义信息纠正错误字符,对缅甸语空格和同音错误定位和纠正不准确。考虑到缅甸语是一种声调语言,并且音素中包含了声调信息,因此提出融合音素的缅甸语语音识别文本纠错方法... 缅甸语语音识别文本中包含大量的同音和空格错误,使用通用的文本语义信息纠正错误字符,对缅甸语空格和同音错误定位和纠正不准确。考虑到缅甸语是一种声调语言,并且音素中包含了声调信息,因此提出融合音素的缅甸语语音识别文本纠错方法。通过参数共享策略对转录文本及其音素进行联合建模,利用音素信息辅助检测并纠正缅甸语同音和空格错误。实验结果表明,本文所提方法相比基线方法ConvSeq2Seq,在缅甸语语音识别纠错任务中的F1值提升了85.97%,达到了79.15%。 展开更多
关键词 缅甸语 语音识别文本纠错 音素 共享参数 BERT
下载PDF
面向轨道交通智能故障检测的边云计算方法
19
作者 李志 林森 张强 《计算机科学》 CSCD 北大核心 2024年第9期331-337,共7页
轨道交通系统是当今社会中交通运力的主要承载系统,对安全性有极高的要求。轨道交通系统的多个组件由于直接暴露在环境中,受多种外界因素影响,易出现故障。这些故障可能会导致列车延误、乘客滞留、服务暂停,甚至是灾难性的生命或资产损... 轨道交通系统是当今社会中交通运力的主要承载系统,对安全性有极高的要求。轨道交通系统的多个组件由于直接暴露在环境中,受多种外界因素影响,易出现故障。这些故障可能会导致列车延误、乘客滞留、服务暂停,甚至是灾难性的生命或资产损失。因此,需要设计针对轨道交通系统的实时故障检测方案,进而才能采取有效的维护措施。不同于基于传统的机器学习(Machine Learning,ML)的故障检测工作,本研究采用中文双向编码器表示转换器(Bidirectional Encoder Representation from Transformer,BERT)深度学习(Deep Learing,DL)模型进行实时的智能故障检测。该模型能够在处理故障检测任务时获取双向上下文的理解,从而更准确地捕捉句子中的语义关系,使得其对故障描述的理解更为精准。BERT的训练需要大量的数据支持,而轨道交通领域中存在多个运营商,它们各自持有独立的故障检测数据。由于数据的保密性,这些数据无法进行共享,从而限制了模型的训练,故采用了联邦边云计算方法,允许多个运营商在保持数据隐私的前提下共同训练BERT模型。联邦学习结合边云计算方法,在本地对轨道交通各运营商的数据进行初步处理,然后将汇总后的梯度上传至云端进行模型训练,最终将训练得到的模型参数发送回各边缘设备,实现模型的更新。研究结果表明,采用联邦边云计算方法进行BERT模型训练,在轨道交通领域的故障检测任务中优于目前已有的先进方案。这一方法在解决数据保密性问题的同时,有效提升了轨道交通故障检测的准确性与可靠性。 展开更多
关键词 轨道交通 故障检测 边云计算 联邦学习 BERT
下载PDF
基于MacBERT与对抗训练的机器阅读理解模型
20
作者 周昭辰 方清茂 +2 位作者 吴晓红 胡平 何小海 《计算机工程》 CAS CSCD 北大核心 2024年第5期41-50,共10页
机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测... 机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测结果。为了提高模型的泛化能力和鲁棒性,提出一种基于掩码校正的来自Transformer的双向编码器表示(Mac BERT)与对抗训练(AT)的机器阅读理解模型。首先利用Mac BERT对输入的问题和文本进行词嵌入转化为向量表示;然后根据原始样本反向传播的梯度变化在原始词向量上添加微小扰动生成对抗样本;最后将原始样本和对抗样本输入双向长短期记忆(Bi LSTM)网络进一步提取文本的上下文特征,输出预测答案。实验结果表明,该模型在简体中文数据集CMRC2018上的F1值和精准匹配(EM)值分别较基线模型提高了1.39和3.85个百分点,在繁体中文数据集DRCD上的F1值和EM值分别较基线模型提高了1.22和1.71个百分点,在英文数据集SQu ADv1.1上的F1值和EM值分别较基线模型提高了2.86和1.85个百分点,优于已有的大部分机器阅读理解模型,并且在真实问答结果上与基线模型进行对比,结果验证了该模型具有更强的鲁棒性和泛化能力,在输入的问题存在噪声的情况下性能更好。 展开更多
关键词 机器阅读理解 对抗训练 预训练模型 掩码校正的来自transformer的双向编码器表示 双向长短期记忆网络
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部