针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目...针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。展开更多
【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改...【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改进加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),以增强在昏暗光线下的车辆检测性能及对多尺度图像的处理能力,特别是对远处或部分遮挡的车辆;其次在主干网络引入可变型卷积(deformable convolutional networks,DCN),以增强模型对不同尺寸车辆的适应性;最后使用精确边界框回归的高效交并比损失函数(focal and efficient intersection over union loss,Focal-EIOU loss)替换高效交并比(efficient intersection over union,EIOU),进一步提升模型的稳定性。【结果】DB-YOLOv8n在自制车辆数据集上相比YOLOv8n,平均精度、精度和召回率分别提高了3.2%、3%和2%。【结论】本研究结果能为提高车辆检测的精确度提供理论参考。展开更多
针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,...针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。展开更多
文摘针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。
文摘【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改进加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),以增强在昏暗光线下的车辆检测性能及对多尺度图像的处理能力,特别是对远处或部分遮挡的车辆;其次在主干网络引入可变型卷积(deformable convolutional networks,DCN),以增强模型对不同尺寸车辆的适应性;最后使用精确边界框回归的高效交并比损失函数(focal and efficient intersection over union loss,Focal-EIOU loss)替换高效交并比(efficient intersection over union,EIOU),进一步提升模型的稳定性。【结果】DB-YOLOv8n在自制车辆数据集上相比YOLOv8n,平均精度、精度和召回率分别提高了3.2%、3%和2%。【结论】本研究结果能为提高车辆检测的精确度提供理论参考。
文摘针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。
基金安徽省高等学校科学研究项目(2022AH050834)安徽理工大学引进人才科研启动基金项目(2022yjrc61)+1 种基金安徽理工大学矿山智能技术与装备省部共建协同创新中心开放基金项目(CICJMITE202206)Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF24)。