期刊文献+
共找到1,433篇文章
< 1 2 72 >
每页显示 20 50 100
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network
1
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:4
2
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) Real-time cutter-head torque prediction bidirectional long short-term memory (Blstm) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
下载PDF
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
3
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety Fault diagnosis Process systems long short-term memory Attention mechanism Neural networks
下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
4
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(lstm) principal component analysis(PCA)
下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:7
5
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) bidirectional long short-term memory(Blstm)
下载PDF
Real-time UAV path planning based on LSTM network
6
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
7
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:7
8
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
下载PDF
A forecasting model for wave heights based on a long short-term memory neural network 被引量:3
9
作者 Song Gao Juan Huang +3 位作者 Yaru Li Guiyan Liu Fan Bi Zhipeng Bai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期62-69,共8页
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with... To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting. 展开更多
关键词 long short-term memory marine forecast neural network significant wave height
下载PDF
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:2
10
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(lstm)
下载PDF
Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks 被引量:1
11
作者 陈偲颖 刘红星 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期208-214,共7页
Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the m... Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing. 展开更多
关键词 ELECTROCARDIOGRAM long short-term memory network kernel density estimation MIT-BIH ARRHYTHMIA database
下载PDF
Dynamic prediction of landslide displacement using singular spectrum analysis and stack long short-term memory network 被引量:1
12
作者 LI Li-min Zhang Ming-yue WEN Zong-zhou 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2597-2611,共15页
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models... An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides. 展开更多
关键词 LANDSLIDE Singular spectrum analysis Stack long short-term memory network Dynamic displacement prediction
下载PDF
Text Sentiment Analysis Based on Convolutional Neural Network and Bidirectional LSTM Model 被引量:1
13
作者 Mengjiao Song Xingyu Zhao +1 位作者 Yong Liu Zhihong Zhao 《国际计算机前沿大会会议论文集》 2018年第2期6-6,共1页
关键词 SENTIMENT analysis long short-term memoryConvolutional NEURAL network bidirectional lstm
下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究
14
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短时记忆网络 条件随机场
下载PDF
基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型
15
作者 冯国富 卢胜涛 +1 位作者 陈明 王耀辉 《江苏农业学报》 CSCD 北大核心 2024年第3期490-499,共10页
为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means... 为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means算法将数据划分成若干个类别;然后,在BiLSTM基础上构建残差连接和加入BN完成高层次特征提取,利用BiLSTM的长期记忆能力保存特征信息;最后,引入自注意力机制突出不同时间节点数据特征的重要性,进一步提升模型的性能。试验结果表明,本研究提出的基于自注意力机制和改进的K-BiLSTM模型的平均绝对误差为0.238、均方根误差为0.322、平均绝对百分比误差为0.035,与单一的BP模型、CNN-LSTM模型、传统的K-means-基于残差和BN的BiLSTM-ATTN等模型相比具有更优的预测性能和泛化能力。 展开更多
关键词 水产养殖 溶解氧预测 K-MEANS聚类 双向长短期记忆网络(Bilstm) 自注意力机制
下载PDF
基于VMD-BiLSTM-WOA的短期风电功率预测
16
作者 史加荣 王双馨 《陕西科技大学学报》 北大核心 2024年第1期177-185,共9页
风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term... 风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term Memory Network, BiLSTM)以及鲸鱼优化算法(Whale Optimization Algorithm, WOA)的混合深度学习模型,以用于短期风电功率预测.首先,VMD将原始风电功率分解为多个子模态,有效减少了序列的波动性;然后对每个子模态分别建立BiLSTM模型,使用WOA对BiLSTM中的参数进行优化,以提高混合模型的效率和预测性能;最后将各个子模型的结果叠加得到最终预测结果.在实验中通过建立不同的比较模型来说明改进策略的有效性和优越性,结果表明所提的混合模型在风电功率预测中具有较高的预测精度. 展开更多
关键词 风电功率 变分模态分解 双向长短期记忆网络 鲸鱼优化 长短期记忆网络
下载PDF
基于Transformer-LSTM的闽南语唇语识别
17
作者 曾蔚 罗仙仙 王鸿伟 《泉州师范学院学报》 2024年第2期10-17,共8页
针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文... 针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文本序列预测.最后,在自建闽南语唇语数据集上进行实验.实验结果表明:模型能有效地提高唇语识别的准确率. 展开更多
关键词 唇语识别 闽南语 TRANSFORMER 长短时记忆网络(lstm) 用时空卷积神经网络 注意力机制 端到端模型
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究
18
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测
19
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(lstm) 注意力机制 卷积神经网络(CNN)
下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
20
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部