期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
1
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network
2
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:5
3
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) Real-time cutter-head torque prediction bidirectional long short-term memory (BLSTM) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:7
4
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) bidirectional long short-term memory(BLSTM)
下载PDF
Analyzing Arabic Twitter-Based Patient Experience Sentiments Using Multi-Dialect Arabic Bidirectional Encoder Representations from Transformers
5
作者 Sarab AlMuhaideb Yasmeen AlNegheimish +3 位作者 Taif AlOmar Reem AlSabti Maha AlKathery Ghala AlOlyyan 《Computers, Materials & Continua》 SCIE EI 2023年第7期195-220,共26页
Healthcare organizations rely on patients’feedback and experiences to evaluate their performance and services,thereby allowing such organizations to improve inadequate services and address any shortcomings.According ... Healthcare organizations rely on patients’feedback and experiences to evaluate their performance and services,thereby allowing such organizations to improve inadequate services and address any shortcomings.According to the literature,social networks and particularly Twitter are effective platforms for gathering public opinions.Moreover,recent studies have used natural language processing to measure sentiments in text segments collected from Twitter to capture public opinions about various sectors,including healthcare.The present study aimed to analyze Arabic Twitter-based patient experience sentiments and to introduce an Arabic patient experience corpus.The authors collected 12,400 tweets from Arabic patients discussing patient experiences related to healthcare organizations in Saudi Arabia from 1 January 2008 to 29 January 2022.The tweets were labeled according to sentiment(positive or negative)and sector(public or private),and thereby the Hospital Patient Experiences in Saudi Arabia(HoPE-SA)dataset was produced.A simple statistical analysis was conducted to examine differences in patient views of healthcare sectors.The authors trained five models to distinguish sentiments in tweets automatically with the following schemes:a transformer-based model fine-tuned with deep learning architecture and a transformer-based model fine-tuned with simple architecture,using two different transformer-based embeddings based on Bidirectional Encoder Representations from Transformers(BERT),Multi-dialect Arabic BERT(MAR-BERT),and multilingual BERT(mBERT),as well as a pretrained word2vec model with a support vector machine classifier.This is the first study to investigate the use of a bidirectional long short-term memory layer followed by a feedforward neural network for the fine-tuning of MARBERT.The deep-learning fine-tuned MARBERT-based model—the authors’best-performing model—achieved accuracy,micro-F1,and macro-F1 scores of 98.71%,98.73%,and 98.63%,respectively. 展开更多
关键词 Sentiment analysis patient experience healthcare TWITTER MARBERT bidirectional long short-term memory support vector machine transformer-based learning deep learning
下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
6
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 Network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
Device-Free Through-the-Wall Activity Recognition Using Bi-Directional Long Short-Term Memory and WiFi Channel State Information
7
作者 Zi-Yuan Gong Xiang Lu +2 位作者 Yu-Xuan Liu Huan-Huan Hou Rui Zhou 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期357-368,共12页
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev... Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field. 展开更多
关键词 Activity recognition bi-directional long short-term memory(bi-lstm) channel state information(CSI) device-free through-the-wall.
下载PDF
Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed
8
作者 Neelam Mughees Mujtaba Hussain Jaffery +2 位作者 Abdullah Mughees Anam Mughees Krzysztof Ejsmont 《Computers, Materials & Continua》 SCIE EI 2023年第6期6375-6393,共19页
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h... Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting. 展开更多
关键词 Deep stacked autoencoder sequence to sequence autoencoder bidirectional long short-term memory network wind speed forecasting solar irradiation forecasting
下载PDF
Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory 被引量:8
9
作者 宋亚 石郭 +2 位作者 陈乐懿 黄鑫沛 夏唐斌 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期85-94,共10页
Turbofan engine is a critical aircraft component with complex structure and high-reliability requirements. Effectively predicting the remaining useful life(RUL) of turbofan engines has essential significance for devel... Turbofan engine is a critical aircraft component with complex structure and high-reliability requirements. Effectively predicting the remaining useful life(RUL) of turbofan engines has essential significance for developing maintenance strategies and reducing maintenance costs. Considering the characteristics of large sample size and high dimension of monitoring data, a hybrid health condition prediction model integrating the advantages of autoencoder and bidirectional long short-term memory(BLSTM) is proposed to improve the prediction accuracy of RUL. Autoencoder is used as a feature extractor to compress condition monitoring data. BLSTM is designed to capture the bidirectional long-range dependencies of features. A hybrid deep learning prediction model of RUL is constructed. This model has been tested on a benchmark dataset. The results demonstrate that this autoencoder-BLSTM hybrid model has a better prediction accuracy than the existing methods, such as multi-layer perceptron(MLP), support vector regression(SVR), convolutional neural network(CNN) and long short-term memory(LSTM). The proposed model can provide strong support for the health management and maintenance strategy development of turbofan engines. 展开更多
关键词 REMAINING useful life(RUL) autoencoder bidirectional long short-term memory(BLSTM) deep learning
原文传递
A New Industrial Intrusion Detection Method Based on CNN-BiLSTM
10
作者 Jun Wang Changfu Si +1 位作者 Zhen Wang Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4297-4318,共22页
Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attack... Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attacks targeting industrial control systems.To ensure the security of industrial networks,intrusion detection systems have been widely used in industrial control systems,and deep neural networks have always been an effective method for identifying cyber attacks.Current intrusion detection methods still suffer from low accuracy and a high false alarm rate.Therefore,it is important to build a more efficient intrusion detection model.This paper proposes a hybrid deep learning intrusion detection method based on convolutional neural networks and bidirectional long short-term memory neural networks(CNN-BiLSTM).To address the issue of imbalanced data within the dataset and improve the model’s detection capabilities,the Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors(SMOTE-ENN)algorithm is applied in the preprocessing phase.This algorithm is employed to generate synthetic instances for the minority class,simultaneously mitigating the impact of noise in the majority class.This approach aims to create a more equitable distribution of classes,thereby enhancing the model’s ability to effectively identify patterns in both minority and majority classes.In the experimental phase,the detection performance of the method is verified using two data sets.Experimental results show that the accuracy rate on the CICIDS-2017 data set reaches 97.7%.On the natural gas pipeline dataset collected by Lan Turnipseed from Mississippi State University in the United States,the accuracy rate also reaches 85.5%. 展开更多
关键词 Intrusion detection convolutional neural network bidirectional long short-term memory neural network multi-head self-attention mechanism
下载PDF
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network 被引量:2
11
作者 Qi Guo Shujun Zhang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1653-1670,共18页
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora... Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset. 展开更多
关键词 Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification
下载PDF
Construction of Human Digital Twin Model Based on Multimodal Data and Its Application in Locomotion Mode Identifcation 被引量:1
12
作者 Ruirui Zhong Bingtao Hu +4 位作者 Yixiong Feng Hao Zheng Zhaoxi Hong Shanhe Lou Jianrong Tan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期7-19,共13页
With the increasing attention to the state and role of people in intelligent manufacturing, there is a strong demand for human-cyber-physical systems (HCPS) that focus on human-robot interaction. The existing intellig... With the increasing attention to the state and role of people in intelligent manufacturing, there is a strong demand for human-cyber-physical systems (HCPS) that focus on human-robot interaction. The existing intelligent manufacturing system cannot satisfy efcient human-robot collaborative work. However, unlike machines equipped with sensors, human characteristic information is difcult to be perceived and digitized instantly. In view of the high complexity and uncertainty of the human body, this paper proposes a framework for building a human digital twin (HDT) model based on multimodal data and expounds on the key technologies. Data acquisition system is built to dynamically acquire and update the body state data and physiological data of the human body and realize the digital expression of multi-source heterogeneous human body information. A bidirectional long short-term memory and convolutional neural network (BiLSTM-CNN) based network is devised to fuse multimodal human data and extract the spatiotemporal features, and the human locomotion mode identifcation is taken as an application case. A series of optimization experiments are carried out to improve the performance of the proposed BiLSTM-CNN-based network model. The proposed model is compared with traditional locomotion mode identifcation models. The experimental results proved the superiority of the HDT framework for human locomotion mode identifcation. 展开更多
关键词 Human digital twin Human-cyber-physical system bidirectional long short-term memory Convolutional neural network Multimodal data
下载PDF
基于深度学习的电子病历中医疗知识抽取与分析(英文) 被引量:10
13
作者 李培林 袁贞明 +2 位作者 涂文博 俞凯 芦东昕 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期133-139,共7页
Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activitie... Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activities of patients.Named entity recognition (NER) and medical relation extraction (MRE) are two basic tasks of MKE.This study aims to improve the recognition accuracy of these two tasks by exploring deep learning methods.Methods This study discussed and built two application scenes of bidirectional long short-term memory combined conditional random field (BiLSTM-CRF) model for NER and MRE tasks.In the data preprocessing of both tasks,a GloVe word embedding model was used to vectorize words.In the NER task,a sequence labeling strategy was used to classify each word tag by the joint probability distribution through the CRF layer.In the MRE task,the medical entity relation category was predicted by transforming the classification problem of a single entity into a sequence classification problem and linking the feature combinations between entities also through the CRF layer.Results Through the validation on the I2B2 2010 public dataset,the BiLSTM-CRF models built in this study got much better results than the baseline methods in the two tasks,where the F1-measure was up to 0.88 in NER task and 0.78 in MRE task.Moreover,the model converged faster and avoided problems such as overfitting.Conclusion This study proved the good performance of deep learning on medical knowledge extraction.It also verified the feasibility of the BiLSTM-CRF model in different application scenarios,laying the foundation for the subsequent work in the EMR field. 展开更多
关键词 MEDICAL knowledge EXTRACTION electronic MEDICAL record named ENTITY recognition MEDICAL relation EXTRACTION deep learning bidirectional long short-term memory CONDITIONAL random field
下载PDF
Parallel Reinforcement Learning-Based Energy Efficiency Improvement for a Cyber-Physical System 被引量:16
14
作者 Teng Liu Bin Tian +1 位作者 Yunfeng Ai Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期617-626,共10页
As a complex and critical cyber-physical system(CPS),the hybrid electric powertrain is significant to mitigate air pollution and improve fuel economy.Energy management strategy(EMS)is playing a key role to improve the... As a complex and critical cyber-physical system(CPS),the hybrid electric powertrain is significant to mitigate air pollution and improve fuel economy.Energy management strategy(EMS)is playing a key role to improve the energy efficiency of this CPS.This paper presents a novel bidirectional long shortterm memory(LSTM)network based parallel reinforcement learning(PRL)approach to construct EMS for a hybrid tracked vehicle(HTV).This method contains two levels.The high-level establishes a parallel system first,which includes a real powertrain system and an artificial system.Then,the synthesized data from this parallel system is trained by a bidirectional LSTM network.The lower-level determines the optimal EMS using the trained action state function in the model-free reinforcement learning(RL)framework.PRL is a fully data-driven and learning-enabled approach that does not depend on any prediction and predefined rules.Finally,real vehicle testing is implemented and relevant experiment data is collected and calibrated.Experimental results validate that the proposed EMS can achieve considerable energy efficiency improvement by comparing with the conventional RL approach and deep RL. 展开更多
关键词 bidirectional long short-term memory(LSTM)network cyber-physical system(CPS) energy management parallel system reinforcement learning(RL)
下载PDF
Traffic flow prediction based on BILSTM model and data denoising scheme 被引量:4
15
作者 李中昱 葛红霞 程荣军 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期191-200,共10页
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar... Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction. 展开更多
关键词 traffic flow prediction bidirectional long short-term memory network data denoising
下载PDF
Transportation robot battery power forecasting based on bidirectional deep-learning method 被引量:3
16
作者 Kerstin Thurow Chao Chen +2 位作者 Steffen Junginger Norbert Stoll Hui Liu 《Transportation Safety and Environment》 EI 2019年第3期205-211,共7页
This paper proposes a data-driven hybrid model for forecasting the battery power voltage of transportation robots by combining a wavelet method and a bidirectional deep-learning technique.In the proposed model,the on-... This paper proposes a data-driven hybrid model for forecasting the battery power voltage of transportation robots by combining a wavelet method and a bidirectional deep-learning technique.In the proposed model,the on-board battery power data is measured and transmitted.A WPD(wavelet packet decomposition)algorithm is employed to decompose the original collected non-stationary series into several relatively more stable subseries.For each subseries,a deep learning–based predictor–bidirectional long short-term memory(BiLSTM)–is constructed to forecast the battery power voltage from one step to three steps ahead.Two experiments verify the effectiveness and generalization ability of the proposed hybrid forecasting model,which shows the highest forecasting accuracy.The obtained forecasting results can be used to decide whether the robot can complete the given task or needs to be recharged,providing effective support for the safe use of transportation robots. 展开更多
关键词 robotic power management transportation robot time series forecasting wavelet packet decomposition bidirectional long short-term memory
原文传递
Multivariety and multimanufacturer drug identification based on near-infrared spectroscopy and recurrent neural network 被引量:1
17
作者 Wenjie Zeng Yunqi Qiu +2 位作者 Yanting Huang Qingping Sun Zhuoya Luo 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第4期86-96,共11页
Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also ... Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also be used for the discriminant analysis of medicines.Long short-term memory(LSTM)neural network,bidirectional long short-term memory(BiLSTM)neural network and gated recurrent unit(GRU)network are variants of the recurrent neural network(RNN).The potential relationship between nonlinear features learned from the sequence by these variants is used to complete the missions infields such as natural language processing,signal classification and video analysis.Since the effect of these variants in drug identification is still to be studied,this paper constructs a multiclassifier of these three variants,using compoundα-keto acid tablets produced by four manufacturers and repaglinide tablets produced by five manufacturers as the research object.Then,the paper analyzes the impacts of seven different preprocessed methods on the drug NIR data by constructing different layers of LSTM,BiLSTM and GRU networks and compares different classification model indicators and training time of each model.When the spectrum data are pre-processed by z-score normalization,the GRU-3 model has the best accuracy in all models.The BiLSTM models are better for analyzing high coincidence data.The method proposed in this paper can be further extended to other NIR spectroscopy data sets. 展开更多
关键词 Near-infrared spectroscopy long short-term memory bidirectional long short-term memory gated recurrent unit multiple classifiers.
下载PDF
Ultra-short-term Interval Prediction of Wind Power Based on Graph Neural Network and Improved Bootstrap Technique 被引量:2
18
作者 Wenlong Liao Shouxiang Wang +3 位作者 Birgitte Bak-Jensen Jayakrishnan Radhakrishna Pillai Zhe Yang Kuangpu Liu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1100-1114,共15页
Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional poi... Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional point prediction,resulting in an increased risk of power system operation.To represent the uncertainty of wind power,this paper proposes a new method for ultra-short-term interval prediction of wind power based on a graph neural network(GNN)and an improved Bootstrap technique.Specifically,adjacent wind farms and local meteorological factors are modeled as the new form of a graph from the graph-theoretic perspective.Then,the graph convolutional network(GCN)and bi-directional long short-term memory(Bi-LSTM)are proposed to capture spatiotemporal features between nodes in the graph.To obtain highquality prediction intervals(PIs),an improved Bootstrap technique is designed to increase coverage percentage and narrow PIs effectively.Numerical simulations demonstrate that the proposed method can capture the spatiotemporal correlations from the graph,and the prediction results outperform popular baselines on two real-world datasets,which implies a high potential for practical applications in power systems. 展开更多
关键词 Wind power graph neural network(GNN) bidirectional long short-term memory(bi-lstm) prediction interval Bootstrap technique
原文传递
Chinese Named Entity Recognition with Character-Level BLSTM and Soft Attention Model
19
作者 Jize Yin Senlin Luo +1 位作者 Zhouting Wu Limin Pan 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期60-71,共12页
Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-le... Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-level features is carefully built and becomes a basis for a new Chinese NER method,which is proposed in this paper.This method converts the raw text to a character vector sequence,extracts global text features with a bidirectional long short-term memory and extracts local text features with a soft attention model.A linear chain conditional random field is also used to label all the characters with the help of the global and local text features.Experiments based on the Microsoft Research Asia(MSRA)dataset are designed and implemented.Results show that the proposed method has good performance compared to other methods,which proves that the global and local text features extracted have a positive influence on Chinese NER.For more variety in the test domains,a resume dataset from Sina Finance is also used to prove the effectiveness of the proposed method. 展开更多
关键词 Chinese named ENTITY recognition(NER) character-level bidirectional long short-term memory SOFT attention model
下载PDF
Deep Broad Learning for Emotion Classification in Textual Conversations
20
作者 Sancheng Peng Rong Zeng +3 位作者 Hongzhan Liu Lihong Cao Guojun Wang Jianguo Xie 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期481-491,共11页
Emotion classification in textual conversations focuses on classifying the emotion of each utterance from textual conversations.It is becoming one of the most important tasks for natural language processing in recent ... Emotion classification in textual conversations focuses on classifying the emotion of each utterance from textual conversations.It is becoming one of the most important tasks for natural language processing in recent years.However,it is a challenging task for machines to conduct emotion classification in textual conversations because emotions rely heavily on textual context.To address the challenge,we propose a method to classify emotion in textual conversations,by integrating the advantages of deep learning and broad learning,namely DBL.It aims to provide a more effective solution to capture local contextual information(i.e.,utterance-level)in an utterance,as well as global contextual information(i.e.,speaker-level)in a conversation,based on Convolutional Neural Network(CNN),Bidirectional Long Short-Term Memory(Bi-LSTM),and broad learning.Extensive experiments have been conducted on three public textual conversation datasets,which show that the context in both utterance-level and speaker-level is consistently beneficial to the performance of emotion classification.In addition,the results show that our proposed method outperforms the baseline methods on most of the testing datasets in weighted-average F1. 展开更多
关键词 emotion classification textual conversation Convolutional Neural Network(CNN) bidirectional long short-term memory(bi-lstm) broad learning
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部