期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
1
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 bilstm XGBoost
下载PDF
基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型
2
作者 冯国富 卢胜涛 +1 位作者 陈明 王耀辉 《江苏农业学报》 CSCD 北大核心 2024年第3期490-499,共10页
为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means... 为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means算法将数据划分成若干个类别;然后,在BiLSTM基础上构建残差连接和加入BN完成高层次特征提取,利用BiLSTM的长期记忆能力保存特征信息;最后,引入自注意力机制突出不同时间节点数据特征的重要性,进一步提升模型的性能。试验结果表明,本研究提出的基于自注意力机制和改进的K-BiLSTM模型的平均绝对误差为0.238、均方根误差为0.322、平均绝对百分比误差为0.035,与单一的BP模型、CNN-LSTM模型、传统的K-means-基于残差和BN的BiLSTM-ATTN等模型相比具有更优的预测性能和泛化能力。 展开更多
关键词 水产养殖 溶解氧预测 K-MEANS聚类 双向长短期记忆网络(bilstm) 自注意力机制
下载PDF
融合CNN与BiLSTM模型的短期电能负荷预测
3
作者 杨桂松 高炳涛 何杏宇 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2253-2260,共8页
针对卷积神经网络(CNN)在捕捉预测序列间历史相关性方面的不足以及在变量复杂情况下出现的无法精准提取预测关键信息的问题,提出一种将双向长短期记忆网络(BiLSTM)与卷积神经网络结合的CNN-BiLSTM模型.首先,采用数据预处理方法保证数据... 针对卷积神经网络(CNN)在捕捉预测序列间历史相关性方面的不足以及在变量复杂情况下出现的无法精准提取预测关键信息的问题,提出一种将双向长短期记忆网络(BiLSTM)与卷积神经网络结合的CNN-BiLSTM模型.首先,采用数据预处理方法保证数据的正确性和完整性,并对数据进行分析以探究多变量之间的相关性;其次,通过CNN与L1正则化对多维输入特征进行特征筛选,选取与预测相关的重要性特征向量;最后,使用BiLSTM对CNN输出的关键特征信息进行保存,形成向量与预测序列,并通过分析时序特征的潜在特点,提取用户的内在消费模式.实验比较了该模型与其他时序模型在不同时间分辨率下的预测效果,实验结果表明,CNN-BiLSTM模型在不同的回望时间间隔下表现出了最佳的预测性能,能够实现更好的短期负荷预测. 展开更多
关键词 卷积神经网络 双向长短期记忆网络 特征筛选 CNN-bilstm模型 短期负荷预测
下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
4
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
基于改进BiLSTM网络的地铁车轮磨耗预测模型
5
作者 朱爱华 白杨 +3 位作者 白堂博 王雅莉 张财胜 李安琰 《都市快轨交通》 北大核心 2024年第3期82-89,共8页
针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM... 针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM)网络模型,用于地铁车轮磨耗预测。首先,利用麻雀搜索算法对双向长短期记忆网络算法的神经元个数、迭代次数、输入批量和学习率等超参数在给定范围内进行寻优,得到参数最优值;然后,以参数最优值来构建改进BiLSTM网络模型,对车轮磨耗进行预测分析;最后,以车轮踏面磨耗和轮缘磨耗作为研究对象,将某地铁1车厢1号车轮的现场实测历史磨耗数据作为输入,对该模型进行训练及验证分析,并与多层感知机(multilayer perceptron,MLP)、LSTM、BiLSTM以及SSA-LSTM模型的预测结果进行对比。研究结果表明:SSA-Bi-LSTM模型的车轮磨耗预测精度更高,与LSTM、BiLSTM以及SSA-LSTM网络模型相比,踏面磨耗的平均绝对百分误差(mean absolute percentage error,MAPE)分别降低了13.28%、10.32%、1.47%,轮缘磨耗分别降低了9.5%、0.46%、0.02%;分别对同一地铁2号、4号车厢的1号位置车轮磨耗进行预测,并与磨耗实测数据进行对比,踏面磨耗的平均绝对百分比误差分别为1.34%、1.42%,轮缘磨耗的平均绝对百分比误差分别为0.18%、0.19%,验证了本文所提模型具有良好的泛化性,为地铁轮对智能化管理提供理论支持,延长车轮使用寿命。 展开更多
关键词 地铁 磨耗预测 麻雀搜索算法 双向长短期记忆网络
下载PDF
结合Word2vec和BiLSTM的民航非计划事件分析方法
6
作者 王捷 周迪 +1 位作者 左洪福 黄维 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期917-924,共8页
安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采... 安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。 展开更多
关键词 民航安全 文本分析 非计划事件 Word2vec 双向长短期记忆(bilstm)神经网络
下载PDF
基于CRITIC和多策略秃鹰优化BiLSTM的水质预测研究
7
作者 雷冰冰 韩镏 +2 位作者 石佳圆 马占有 牟云飞 《安全与环境学报》 CAS CSCD 北大核心 2024年第9期3688-3702,共15页
科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜... 科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。 展开更多
关键词 环境工程学 水质预测 指标客观性的权重赋权法(CRITIC)法 改进的秃鹰搜索算法 双向长短时记忆网络(bilstm)
下载PDF
基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测 被引量:2
8
作者 刘杰 从兰美 +3 位作者 夏远洋 潘广源 赵汉超 韩子月 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期123-133,共11页
新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改... 新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改进鲸鱼优化算法优化双向长短期记忆(improved whale optimization algorithm-bidirectional long short-term memory,IWOA-BILSTM)神经网络相结合的短期负荷预测模型。首先利用DBO优化VMD,分解时间序列数据,并根据最小包络熵对各种特征数据进行分类,增强了分解效果。通过对原始数据进行有效分解,降低了数据的波动性。然后使用非线性收敛因子、自适应权重策略与随机差分法变异策略增强鲸鱼优化算法的局部及全局搜索能力得到改进鲸鱼优化算法(improved whale optimization algorithm,IWOA),并用于优化双向长短期记忆(bidirectional long short-term memory,BILSTM)神经网络,增加了模型预测的精确度。最后将所提方法应用于某地真实的负荷数据,得到最终相对均方根误差、平均绝对误差和平均绝对百分比误差分别为0.0084、48.09、0.66%,证明了提出的模型对于短期负荷预测的有效性。 展开更多
关键词 蜣螂优化算法 VMD 改进鲸鱼算法 短期电力负荷预测 双向长短期记忆神经网络 组合算法
下载PDF
基于ISABO-IBiLSTM模型的刀具磨损预测方法
9
作者 曾浩 曹华军 董俭雄 《中国机械工程》 EI CAS CSCD 北大核心 2024年第11期1995-2006,共12页
针对现有的刀具磨损预测方法因为缺少优化算法及网络结构不完善而导致预测精度不高的问题,提出了一种将改进的减法优化器(SABO)算法和改进的双向长短时记忆(BiLSTM)网络相结合的刀具磨损状态预测模型(ISABO-IBiLSTM模型)。首先,采用截... 针对现有的刀具磨损预测方法因为缺少优化算法及网络结构不完善而导致预测精度不高的问题,提出了一种将改进的减法优化器(SABO)算法和改进的双向长短时记忆(BiLSTM)网络相结合的刀具磨损状态预测模型(ISABO-IBiLSTM模型)。首先,采用截断法、Hampel滤波法、改进的完全自适应噪声集合经验模态分解(ICEEMDAN)-改进的小波阈值降噪法对加速度振动信号与力信号数据进行预处理。然后,提取预处理后的信号数据的时域、频域、时频域特征,并通过斯皮尔曼和最大互信息相关系数筛选特征,构建模型的输入。最后,利用改进的SABO算法对改进后的BiLSTM网络进行参数寻优,基于所得到的优化参数训练网络实现磨损预测。实验数据分析结果表明,所提出的ISABO-IBiLSTM模型对刀具磨损量的预测精度为98.49%~98.83%,较BiLSTM模型、改进的BiLSTM模型、改进的卷积神经网络(ICNN)-BiLSTM模型有了较大的提高。 展开更多
关键词 刀具磨损预测 减法优化器算法 双向长短时记忆网络 信号处理 深度学习
下载PDF
基于奇异谱分析的CNN-BiLSTM短期空调负荷预测模型 被引量:2
10
作者 杨心宇 任中俊 +2 位作者 周国峰 易检长 何影 《建筑节能(中英文)》 CAS 2024年第3期64-73,共10页
空调负荷的精准预测对建筑空调系统优化控制具有重要意义。为提高空调负荷预测精度,提出了一种基于奇异谱分析(SSA,Singular Spectrum Analysis)的卷积神经网络(CNN,Convolutional Neural Network)和双向长短时记忆网络(BiLSTM,Bidirect... 空调负荷的精准预测对建筑空调系统优化控制具有重要意义。为提高空调负荷预测精度,提出了一种基于奇异谱分析(SSA,Singular Spectrum Analysis)的卷积神经网络(CNN,Convolutional Neural Network)和双向长短时记忆网络(BiLSTM,Bidirectional Long Short Term Memory)短期空调负荷预测模型。使用皮尔森相关系数选取与空调负荷高相关性特征。针对空调负荷的波动性和随机性,采用SSA将空调负荷分解为多个分量,同时将各个分量带入CNN-BiLSTM模型进行预测,该模型利用了CNN的特征提取和BiLSTM的双向学习能力,并将各个分量预测结果进行重构。通过不同建筑类型的空调数据对该模型进行验证分析,发现所提出模型在预测办公建筑空调负荷中RMSE、MAPE和MAE为19.47RT、14.72RT和2.33%,在预测商业建筑空调负荷中RMSE、MAPE和MAE为82.5RT、34.21RT和0.87%。结果表明,所提出的模型具有普适性且精度较高,可进行推广应用。 展开更多
关键词 空调负荷预测 双向长短时记忆网络 奇异谱分析 卷积神经网络
下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测
11
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进的自适应噪声完备集经验模态分解(ICEEMDAN) 排列熵(PE) 双向长短期记忆神经网络(bilstm) 核极限学习(KELM)
下载PDF
基于二次分解和IDBO-DABiLSTM的短期风电功率预测模型
12
作者 卢苡锋 王霄 《计算机工程》 CAS CSCD 北大核心 2024年第12期99-109,共11页
为提高风电功率预测精度,针对风电的强波动性和高随机性,提出一种基于二次分解和改进蜣螂优化算法(IDBO)-双重注意力双向长短期记忆(DABiLSTM)网络的风电功率预测模型。首先,采用自适应噪声的完全集合经验模态分解(CEEMDAN)和小波包分解... 为提高风电功率预测精度,针对风电的强波动性和高随机性,提出一种基于二次分解和改进蜣螂优化算法(IDBO)-双重注意力双向长短期记忆(DABiLSTM)网络的风电功率预测模型。首先,采用自适应噪声的完全集合经验模态分解(CEEMDAN)和小波包分解(WPD)构成一种二次分解方法对历史风电功率和风速数据进行分解,降低初始序列的随机性和非平稳性。其次,在BiLSTM网络的基础上,加入特征和时间注意力机制,建立DABiLSTM模型,充分挖掘特征间的关联性和时间序列间的长时间依赖性。最后,采用黄金正弦算法来优化滚球蜣螂的位置,从而增强算法在局部和全局的探索能力,同时引入动态权重系数改进偷窃蜣螂的位置,以平衡算法在全局和局部的探索能力,提出IDBO,并用其优化DABiLSTM网络的超参数,防止网络陷入局部最优解。采用贵州某风电场实际数据对所提模型进行实验,结果表明该方法能有效提升模型的预测能力,所提出的模型的均方根误差(RMSE)和平均绝对误差(MAE)在单步预测下分别为0.0449和0.0312 MW,与其他模型相比,分别平均降低了36.9%和31.7%,表现出较好的预测精度和鲁棒性。 展开更多
关键词 风电功率预测 二次分解 双向长短期记忆网络 改进蜣螂优化算法 注意力机制
下载PDF
Stability analysis of extended discrete-time BAMneural networks based on LMI approach
13
作者 刘妹琴 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期588-594,共7页
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim... We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks. 展开更多
关键词 standard neural network model bidirectional associative memory DISCRETE-time linear matrix inequality global asymptotic stability.
下载PDF
CEEMDAN-CNN-BiLSTM混合模型矿区地表沉降预测
14
作者 王凯 肖星星 +2 位作者 余永明 贾庆磊 赵思仲 《导航定位学报》 CSCD 北大核心 2024年第5期156-163,共8页
为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDA... 为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDAN-CNN-BiLSTM混合地表沉降预测方法:以皖北某大型煤矿开采工作面与工业广场区域为验证对象,对比分析稳定区域和重点监测区域数据形态;然后基于CEEMDAN重构监测站高程数据分量,输入CNN模型提取分量隐含信息;最后构建BiLSTM模型,实现对沉降监测点位数据的短期预测。实验结果表明,相较于传统的CNN和长短期记忆模型,CEEMDAN-CNN-BiLSTM混合模型可有效降低预测误差,其中平均绝对百分比误差(MAPE)的降低范围为40%~90%,而均方根(RMS)误差的降低范围为52%~87%;该模型在时空特征捕捉和泛化能力方面表现性能较好,可为GNSS时间序列短期预测提供更为精准和可靠的解决方案。 展开更多
关键词 沉降预测 自动化监测 时序数据 混合模型 自适应噪声完备集合经验模态分解(CEEMDAN)-卷积神经网络(CNN)-双向长短期记忆网络(bilstm)
下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
15
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
基于VMD-SSA-BiLSTM网络下的短期电力负荷预测
16
作者 王斌斌 孙丽江(指导) 《上海电机学院学报》 2024年第5期274-279,298,共7页
短期电力负荷预测是电力系统运控的重要部分,为提高负荷预测精度,针对实际负荷数据非线性、随机性等特征,建立了一种基于变分模态分解(VMD)下麻雀搜索算法(SSA)优化的双向长短期记忆网络(BiLSTM)的短期电力负荷预测模型。采用VMD对电力... 短期电力负荷预测是电力系统运控的重要部分,为提高负荷预测精度,针对实际负荷数据非线性、随机性等特征,建立了一种基于变分模态分解(VMD)下麻雀搜索算法(SSA)优化的双向长短期记忆网络(BiLSTM)的短期电力负荷预测模型。采用VMD对电力负荷数据进行分解,提取多个不同频率特征的模态分量,并引入SSA算法对BiLSTM网络参数进行优化,根据输入的模态分量建立SSA-BiLSTM预测模型进行预测。结果表明:相比于BiLSTM模型和VMD-BiLSTM模型,所建立的模型预测精度更高,拟合效果更好。 展开更多
关键词 短期电力负荷预测 变分模态分解 麻雀搜索算法 双向长短期记忆网络
下载PDF
融合SARIMA与BiLSTM的水利设施形变预测
17
作者 唐帅 杨涛 +2 位作者 皮明 张良 袁自祥 《现代雷达》 CSCD 北大核心 2024年第3期96-103,共8页
水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测... 水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题。该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度。结合某水电站4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度。 展开更多
关键词 水利设施监测 时间序列预测 趋势性 季节自回归差分移动平均模型 双向长短期记忆网络
下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究
18
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(bilstm) 栈式稀疏自编码器(SSAE)
下载PDF
基于SSA-BiLSTM和奇异谱分析的短期风电功率预测
19
作者 杨仁峥 黄艳国 何烜 《科学技术与工程》 北大核心 2024年第22期9392-9399,共8页
针对风电功率序列具有波动性和较高复杂度的特点,提出了一种基于麻雀算法(sparrow search algorithm,SSA)优化的双向长短期记忆神经网络(bidirectional long and short-term memory neural network,BiLSTM)和奇异谱分析的短期风电功率... 针对风电功率序列具有波动性和较高复杂度的特点,提出了一种基于麻雀算法(sparrow search algorithm,SSA)优化的双向长短期记忆神经网络(bidirectional long and short-term memory neural network,BiLSTM)和奇异谱分析的短期风电功率预测模型。首先,采用奇异值分析对历史功率数据进行特征提取,去噪处理减少噪声信息干扰;其次,利用麻雀算法对BiLSTM模型超参数寻优,以BiLSTM为基础构建风电功率预测模型,提高了模型训练效率;最后,采用某风电场的运行数据验证模型精度并对比其他模型验证模型合理性。实验结果表明:改进后的模型相对于基准模型,绝对误差降低了14.2%,均方根误差降低了4.24%,本文所提改进BiLSTM模型具有较好的预测性能,能有效提高短期风电功率预测的精度。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络(bilstm) 麻雀搜索算法 奇异谱分析
下载PDF
基于改进BiLSTM-RF的短期负荷预测研究
20
作者 唐滨钧 邝先验 吴丹 《自动化仪表》 CAS 2024年第2期59-63,68,共6页
电力负荷的准确预测能有效保持电网运行的稳定性,提高经济效益和社会效益。为了提高负荷预测的精准度,首先利用麻雀搜索算法(SSA)和变分模态分解(VMD)对输入的原始负荷进行模态分解,降低了电力负荷数据随机性与非平稳性;然后利用双向长... 电力负荷的准确预测能有效保持电网运行的稳定性,提高经济效益和社会效益。为了提高负荷预测的精准度,首先利用麻雀搜索算法(SSA)和变分模态分解(VMD)对输入的原始负荷进行模态分解,降低了电力负荷数据随机性与非平稳性;然后利用双向长短期记忆-随机森林(BiLSTM-RF)组合模型对分解后的子模态进行特征提取和预测。对某地区公开数据的性能验证与模型对比分析结果表明,改进的BiLSTM-RF(+BiLSTM-RF)组合模型在决定系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分误差(MAPE)这四个预测精度指标方面分别达到了0.973、300.31、134.91、0.037。与传统的支持向量机(SVM)、长短期记忆(LSTM)网络、门控循环单元(GRU)等单一预测方法,以及未改进的BiLSTM-RF组合预测方法相比,+BiLSTM-RF组合模型有更好的预测表现。 展开更多
关键词 短期负荷预测 麻雀搜索算法 变分模态分解 双向长短期记忆网络 随机森林 注意力机制 滑窗宽度
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部