Objective:To explore the bidirectional mechanism of Haizao Yuhu decoction(HYD)on goiter and drug-induced liver injury(DILI)based on machine learning and data mining.Methods:Firstly,compounds of HYD were selected from ...Objective:To explore the bidirectional mechanism of Haizao Yuhu decoction(HYD)on goiter and drug-induced liver injury(DILI)based on machine learning and data mining.Methods:Firstly,compounds of HYD were selected from the TCMSP,TCMIP,and BATMAN databases,then the TCMSP was used to acquire the targets of compounds.Targets of goiter and DILI were obtained from the GeneCards database.Secondly,common targets of“HYD-goiter”and“HYD-DILI”as well as related compounds were used to construct the networks and perform Random Walk with Restart(RWR)algorithm and network stability test.Finally,core targets in the“HYD-goiter”and“HYD-DILI”networks were used for molecular docking with core compounds and searched for validation on PubChem,and the relevant experimental data of our group were quoted to verify the analysis results.Results:There were 22 intersection targets of HYD and DILI,326 of HYD and goiter.RWR analysis showed that MAPK1,MAPK3,AKT1,etc.may be the core targets of HYD treating goiter,RELA,TNF,IL4,etc.may be the core targets of the bidirectional effect,and eckol may be the core compound in bidirectional effect.Network stability test indicated that the HYD had a high stability on treating goiter and playing a bidirectional effect.The core targets and core compounds docked well,and 37.3%of targets had been confirmed by experiments and 29.8%core targets had been confirmed.Our previous experimental result confirmed that the HYD could treat goiter usefully by reducing the expression levels of PI3K and AKT mRNA,and down-regulating the expression of Cyclin D1 and Bcl-2 mRNA.Conclusion:HYD containing“sargassum-liquorice”combination may have a bidirectional effect on treating goiter and causing DILI.We offered a new way for more explorations on the therapeutic and toxic bidirectional mechanisms based on machine learning and data mining.展开更多
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by...In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.展开更多
基金funded by the National Natural Science Foundation of China(Grant No:82104411).
文摘Objective:To explore the bidirectional mechanism of Haizao Yuhu decoction(HYD)on goiter and drug-induced liver injury(DILI)based on machine learning and data mining.Methods:Firstly,compounds of HYD were selected from the TCMSP,TCMIP,and BATMAN databases,then the TCMSP was used to acquire the targets of compounds.Targets of goiter and DILI were obtained from the GeneCards database.Secondly,common targets of“HYD-goiter”and“HYD-DILI”as well as related compounds were used to construct the networks and perform Random Walk with Restart(RWR)algorithm and network stability test.Finally,core targets in the“HYD-goiter”and“HYD-DILI”networks were used for molecular docking with core compounds and searched for validation on PubChem,and the relevant experimental data of our group were quoted to verify the analysis results.Results:There were 22 intersection targets of HYD and DILI,326 of HYD and goiter.RWR analysis showed that MAPK1,MAPK3,AKT1,etc.may be the core targets of HYD treating goiter,RELA,TNF,IL4,etc.may be the core targets of the bidirectional effect,and eckol may be the core compound in bidirectional effect.Network stability test indicated that the HYD had a high stability on treating goiter and playing a bidirectional effect.The core targets and core compounds docked well,and 37.3%of targets had been confirmed by experiments and 29.8%core targets had been confirmed.Our previous experimental result confirmed that the HYD could treat goiter usefully by reducing the expression levels of PI3K and AKT mRNA,and down-regulating the expression of Cyclin D1 and Bcl-2 mRNA.Conclusion:HYD containing“sargassum-liquorice”combination may have a bidirectional effect on treating goiter and causing DILI.We offered a new way for more explorations on the therapeutic and toxic bidirectional mechanisms based on machine learning and data mining.
基金supported by the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant QL20210212the Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology under Grant CX202102043.
文摘In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.