Nowadays,Internet has become an indispensable part of daily life and is used in many fields.Due to the large amount of Internet traffic,computers are subject to various security threats,which may cause serious economi...Nowadays,Internet has become an indispensable part of daily life and is used in many fields.Due to the large amount of Internet traffic,computers are subject to various security threats,which may cause serious economic losses and even endanger national security.It is hoped that an effective security method can systematically classify intrusion data in order to avoid leakage of important data or misuse of data.As machine learning technology matures,deep learning is widely used in various industries.Combining deep learning with network security and intrusion detection is the current trend.In this paper,the problem of data classification in intrusion detection system is studied.We propose an intrusion detection model based on stack bidirectional long short-term memory(LSTM),introduce stack bidirectional LSTM into the field of intrusion detection and apply it to the intrusion detection.In order to determine the appropriate parameters and structure of stack bidirectional LSTM network,we have carried out experiments on various network structures and parameters and analyzed the experimental results.The classic KDD Cup’1999 dataset was selected for experiments so that we can obtain convincing and comparable results.Experimental results derived from the KDD Cup’1999 dataset show that the network with three hidden layers containing 80 LSTM cells is superior to other algorithms in computational cost and detection performance due to stack bidirectional LSTM model’s ability to review time and correlate with connected records continuously.The experiment shows the effectiveness of stack bidirectional LSTM network in intrusion detection.展开更多
Predicting travel trajectory of vehicles can not only provide personalized services to users,but also have a certain effect on traffic guidance and traffic control.In this paper,we build a Bayonet-Corpus based on the ...Predicting travel trajectory of vehicles can not only provide personalized services to users,but also have a certain effect on traffic guidance and traffic control.In this paper,we build a Bayonet-Corpus based on the context of traffic intersections,and use it to model a traffic network.Besides,Bidirectional Gated Recurrent Unit(Bi-GRU)is used to predict the sequence of traffic intersections in one single trajectory.Firstly,considering that real traffic networks are usually complex and disorder and cannot reflect the higher dimensional relationship among traffic intersections,this paper proposes a new traffic network modeling algorithm based on the context of traffic intersections:inspired by the probabilistic language model,a Bayonet-Corpus is constructed from traffic intersections in real trajectory sequence,so the high-dimensional similarity between corpus nodes can be used to measure the semantic relation of real traffic intersections.This algorithm maps vehicle trajectory nodes into a high-dimensional space vector,blocking complex structure of real traffic network and reconstructing the traffic network space.Then,the bayonets sequence in real traffic network is mapped into a matrix.Considering the trajectories sequence is bidirectional,and Bi-GRU can handle information from forward and backward simultaneously,we use Bi-GRU to bidirectionally model the trajectory matrix for the purpose of prediction.展开更多
Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also ...Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also be used for the discriminant analysis of medicines.Long short-term memory(LSTM)neural network,bidirectional long short-term memory(BiLSTM)neural network and gated recurrent unit(GRU)network are variants of the recurrent neural network(RNN).The potential relationship between nonlinear features learned from the sequence by these variants is used to complete the missions infields such as natural language processing,signal classification and video analysis.Since the effect of these variants in drug identification is still to be studied,this paper constructs a multiclassifier of these three variants,using compoundα-keto acid tablets produced by four manufacturers and repaglinide tablets produced by five manufacturers as the research object.Then,the paper analyzes the impacts of seven different preprocessed methods on the drug NIR data by constructing different layers of LSTM,BiLSTM and GRU networks and compares different classification model indicators and training time of each model.When the spectrum data are pre-processed by z-score normalization,the GRU-3 model has the best accuracy in all models.The BiLSTM models are better for analyzing high coincidence data.The method proposed in this paper can be further extended to other NIR spectroscopy data sets.展开更多
The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention R...The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.展开更多
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation...In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.展开更多
【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提...【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提出了基于时间序列双向循环插补模型(Bidirectional recurrent imputation for time series,BRITS)的大地电磁脉冲类噪声处理方法。首先,将噪声干扰段删除,此时大地电磁时间序列可视为待插补的缺失序列,而后利用该缺失序列构建训练集,对BRITS模型进行插补训练,训练完成后对缺失序列进行插补,即可得到去噪结果。通过仿真及实测含噪声数据处理,并与经验模态分解(Empirical mode decomposition,EMD)阈值方法进行了对比。【结果和结论】结果表明:BRITS方法对仿真噪声数据处理后与原始数据的归一化互相关系数可达0.999以上,信噪比可达29 dB以上,EMD阈值方法处理前后相关系数为0.778,信噪比为3.09 dB;在实测数据处理中,BRITS方法有效恢复了噪声干扰数据,相比EMD阈值方法,其阻抗奈奎斯特图更接近天然大地电磁信号特征。通过不同训练样本试验得出:对4分量大地电磁数据而言,数据中至少需包含两道正常分量,单个含噪分量中噪声占比不大于20%,且噪声连续干扰长度不超过10个采样点,此时,BRITS方法去噪后数据的相关系数在0.96以上,可以保证一定的去噪精度。展开更多
由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for ...由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for Text Comments,BF_Bi GAC).依据大五人格模型能够有效表达用户性格的优势,通过计算不同维度性格得分,从评论文本中获取用户性格特征.利用双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi GRU)和卷积神经网络(Convolutional Neural Network,CNN)可以有效提取文本上下文语义特征和局部结构特征的优势,提出一种基于Bi GRU、CNN和双层注意力机制的文本语义-结构特征获取方法.为区分不同类型特征的影响,引入混合注意力层实现对用户性格特征和文本语义-结构特征的有效融合,以此获得最终的文本向量表达.在IMDB、Yelp-2、Yelp-5及Ekman四个评论数据集上的对比实验结果表明,BF_Bi GAC在分类准确率(Accuracy)和加权macro F_(1)值(F_(w))上均获得较好表现,相对于拼接Bi GRU、CNN的情感分类方法(Sentiment Classification Method Concatenating Bi GRU and CNN,Bi G-RU_CNN)在Accuracy值上分别提升0.020、0.012、0.017及0.011,相对于拼接CNN、Bi GRU的情感分类方法(Sentiment Classification Method Concatenating CNN and Bi GRU,Conv Bi LSTM)F_(w)值上分别提升0.022、0.013、0.028及0.023;相对于预训练模型BERT和Ro BERTa,BF_Bi GAC在保证分类精度的情况下获得了较高的运行效率.展开更多
基金This work was supported by Scientific Research Starting Project of SWPU[Zheng,D.,No.0202002131604]Major Science and Technology Project of Sichuan Province[Zheng,D.,No.8ZDZX0143]+1 种基金Ministry of Education Collaborative Education Project of China[Zheng,D.,No.952]Fundamental Research Project[Zheng,D.,Nos.549,550].
文摘Nowadays,Internet has become an indispensable part of daily life and is used in many fields.Due to the large amount of Internet traffic,computers are subject to various security threats,which may cause serious economic losses and even endanger national security.It is hoped that an effective security method can systematically classify intrusion data in order to avoid leakage of important data or misuse of data.As machine learning technology matures,deep learning is widely used in various industries.Combining deep learning with network security and intrusion detection is the current trend.In this paper,the problem of data classification in intrusion detection system is studied.We propose an intrusion detection model based on stack bidirectional long short-term memory(LSTM),introduce stack bidirectional LSTM into the field of intrusion detection and apply it to the intrusion detection.In order to determine the appropriate parameters and structure of stack bidirectional LSTM network,we have carried out experiments on various network structures and parameters and analyzed the experimental results.The classic KDD Cup’1999 dataset was selected for experiments so that we can obtain convincing and comparable results.Experimental results derived from the KDD Cup’1999 dataset show that the network with three hidden layers containing 80 LSTM cells is superior to other algorithms in computational cost and detection performance due to stack bidirectional LSTM model’s ability to review time and correlate with connected records continuously.The experiment shows the effectiveness of stack bidirectional LSTM network in intrusion detection.
基金This research is partially supported by the National Natural Science Foundation of China(Grant No.61772098)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD K201900603,KJQN201900629)Chongqing Grad-uate Education Teaching Reform Project(No.yjg183081).
文摘Predicting travel trajectory of vehicles can not only provide personalized services to users,but also have a certain effect on traffic guidance and traffic control.In this paper,we build a Bayonet-Corpus based on the context of traffic intersections,and use it to model a traffic network.Besides,Bidirectional Gated Recurrent Unit(Bi-GRU)is used to predict the sequence of traffic intersections in one single trajectory.Firstly,considering that real traffic networks are usually complex and disorder and cannot reflect the higher dimensional relationship among traffic intersections,this paper proposes a new traffic network modeling algorithm based on the context of traffic intersections:inspired by the probabilistic language model,a Bayonet-Corpus is constructed from traffic intersections in real trajectory sequence,so the high-dimensional similarity between corpus nodes can be used to measure the semantic relation of real traffic intersections.This algorithm maps vehicle trajectory nodes into a high-dimensional space vector,blocking complex structure of real traffic network and reconstructing the traffic network space.Then,the bayonets sequence in real traffic network is mapped into a matrix.Considering the trajectories sequence is bidirectional,and Bi-GRU can handle information from forward and backward simultaneously,we use Bi-GRU to bidirectionally model the trajectory matrix for the purpose of prediction.
基金This research was supported by the Science and Technology Planning Project of Guangdong Province(Grant Nos.2017B020221002,2018B020207008 and 2021B1111610005)Science and Technology Planning Project of Guangzhou,Grant No.201707010410。
文摘Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also be used for the discriminant analysis of medicines.Long short-term memory(LSTM)neural network,bidirectional long short-term memory(BiLSTM)neural network and gated recurrent unit(GRU)network are variants of the recurrent neural network(RNN).The potential relationship between nonlinear features learned from the sequence by these variants is used to complete the missions infields such as natural language processing,signal classification and video analysis.Since the effect of these variants in drug identification is still to be studied,this paper constructs a multiclassifier of these three variants,using compoundα-keto acid tablets produced by four manufacturers and repaglinide tablets produced by five manufacturers as the research object.Then,the paper analyzes the impacts of seven different preprocessed methods on the drug NIR data by constructing different layers of LSTM,BiLSTM and GRU networks and compares different classification model indicators and training time of each model.When the spectrum data are pre-processed by z-score normalization,the GRU-3 model has the best accuracy in all models.The BiLSTM models are better for analyzing high coincidence data.The method proposed in this paper can be further extended to other NIR spectroscopy data sets.
基金supported by the National Natural Science Foundation of China(Nos.62106283 and 72001214)。
文摘The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.
基金supported by the National Major Science and Technology Special Project(No.2016ZX05026-002).
文摘In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.
文摘【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提出了基于时间序列双向循环插补模型(Bidirectional recurrent imputation for time series,BRITS)的大地电磁脉冲类噪声处理方法。首先,将噪声干扰段删除,此时大地电磁时间序列可视为待插补的缺失序列,而后利用该缺失序列构建训练集,对BRITS模型进行插补训练,训练完成后对缺失序列进行插补,即可得到去噪结果。通过仿真及实测含噪声数据处理,并与经验模态分解(Empirical mode decomposition,EMD)阈值方法进行了对比。【结果和结论】结果表明:BRITS方法对仿真噪声数据处理后与原始数据的归一化互相关系数可达0.999以上,信噪比可达29 dB以上,EMD阈值方法处理前后相关系数为0.778,信噪比为3.09 dB;在实测数据处理中,BRITS方法有效恢复了噪声干扰数据,相比EMD阈值方法,其阻抗奈奎斯特图更接近天然大地电磁信号特征。通过不同训练样本试验得出:对4分量大地电磁数据而言,数据中至少需包含两道正常分量,单个含噪分量中噪声占比不大于20%,且噪声连续干扰长度不超过10个采样点,此时,BRITS方法去噪后数据的相关系数在0.96以上,可以保证一定的去噪精度。
文摘由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for Text Comments,BF_Bi GAC).依据大五人格模型能够有效表达用户性格的优势,通过计算不同维度性格得分,从评论文本中获取用户性格特征.利用双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi GRU)和卷积神经网络(Convolutional Neural Network,CNN)可以有效提取文本上下文语义特征和局部结构特征的优势,提出一种基于Bi GRU、CNN和双层注意力机制的文本语义-结构特征获取方法.为区分不同类型特征的影响,引入混合注意力层实现对用户性格特征和文本语义-结构特征的有效融合,以此获得最终的文本向量表达.在IMDB、Yelp-2、Yelp-5及Ekman四个评论数据集上的对比实验结果表明,BF_Bi GAC在分类准确率(Accuracy)和加权macro F_(1)值(F_(w))上均获得较好表现,相对于拼接Bi GRU、CNN的情感分类方法(Sentiment Classification Method Concatenating Bi GRU and CNN,Bi G-RU_CNN)在Accuracy值上分别提升0.020、0.012、0.017及0.011,相对于拼接CNN、Bi GRU的情感分类方法(Sentiment Classification Method Concatenating CNN and Bi GRU,Conv Bi LSTM)F_(w)值上分别提升0.022、0.013、0.028及0.023;相对于预训练模型BERT和Ro BERTa,BF_Bi GAC在保证分类精度的情况下获得了较高的运行效率.