The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainl...The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainless steel with ESCC. The surface finish, chemical composition, macroand microstructures, and inclusions of the remelted billets were characterized. ESCC reduces the cost and increases the productivity in comparison to traditional ESR, while achieves comparably excellent products.展开更多
In this study, the key technologies of a 6-m long bearing steel ingot produced by electroslag remelting withdrawing(ESRW) process, including bifilar mode supply, slag system development, and design of mold, were studi...In this study, the key technologies of a 6-m long bearing steel ingot produced by electroslag remelting withdrawing(ESRW) process, including bifilar mode supply, slag system development, and design of mold, were studied based on the laboratory research achievements. The 6-m long ingot of bearing steel GGr15 with a cross-section of 300 mm × 340 mm was produced using the ESRW process with a bifilar mode and a multi-taper T-mold in a plant. The testing results show that the melting rate using the ESRW bifilar mode technology is three times faster than traditional electroslag remelting(ESR), and the power consumption is only 1,320 k Wh per ton steel. Through testing for the chemical composition, macrostructure and inclusions of remelted ingot, it can be concluded that the ESRW bifilar mode technology not only retains the characteristics of traditional ESR, but also improves the production efficiency and reduces the cost compared to traditional ESR.展开更多
文摘The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainless steel with ESCC. The surface finish, chemical composition, macroand microstructures, and inclusions of the remelted billets were characterized. ESCC reduces the cost and increases the productivity in comparison to traditional ESR, while achieves comparably excellent products.
基金financially supported by the National Natural Science Foundation of China(No.51474126)the Science and Technology Commission of Liaoning,China(No.L2013125)
文摘In this study, the key technologies of a 6-m long bearing steel ingot produced by electroslag remelting withdrawing(ESRW) process, including bifilar mode supply, slag system development, and design of mold, were studied based on the laboratory research achievements. The 6-m long ingot of bearing steel GGr15 with a cross-section of 300 mm × 340 mm was produced using the ESRW process with a bifilar mode and a multi-taper T-mold in a plant. The testing results show that the melting rate using the ESRW bifilar mode technology is three times faster than traditional electroslag remelting(ESR), and the power consumption is only 1,320 k Wh per ton steel. Through testing for the chemical composition, macrostructure and inclusions of remelted ingot, it can be concluded that the ESRW bifilar mode technology not only retains the characteristics of traditional ESR, but also improves the production efficiency and reduces the cost compared to traditional ESR.