Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nick...Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nickel foam has been developed as a bifunctional electrocatalyst for urea oxidation and hydrogen evolution.The NiMoO_(4)‐200/NF catalyst exhibits efficient activity toward hydrogen evolution reaction with a low overpotential of only 68 mV in 1.0 mol/L KOH to gain a current density of 10 mA cm^(–2).The NiMoO_(4)‐300/NF catalyst exhibits a prominent oxygen evolution reaction(OER)catalytic activity with an overpotential of 288 mV at 50 mA cm^(–2),as well as for urea oxidation reaction with an ultralow potential of 1.36 V at 10 mA cm^(–2).The observed difference in electrocatalytic activity and selectivity,derived by temperature variation,is ascribed to different lattice oxygen contents.The lattice oxygen of NiMoO_(4)‐300/NF is more than that of NiMoO_(4)‐200/NF,and the lattice oxygen is conducive to the progress of OER.A urea electrolyzer was assembled with Ni‐MoO_(4)‐200/NF and NiMoO_(4)‐300/NF as cathode and anode respectively,delivering a current density of 10 mA cm^(–2)at a cell voltage of merely 1.38 V.The NiMoO_(4)nanorod arrays has also been successfully applied for photovoltage‐driven urea electrolysis and hydrogen production,revealing its great potential for solar‐driven energy conversion.展开更多
2,4-Dichlorophenoxyacetyl(thio)urea and S-(+)-3-methyl-2-(4-chlorophenyl)butyramides were synthesized via acylation,aminolysis,esterification and addition reactions,and the partial new compounds have desirable ...2,4-Dichlorophenoxyacetyl(thio)urea and S-(+)-3-methyl-2-(4-chlorophenyl)butyramides were synthesized via acylation,aminolysis,esterification and addition reactions,and the partial new compounds have desirable bioactive activity.展开更多
Novel hierarchical coral-like Ni-Mo sulfides on Ti mesh (denoted as HC-NiMoSfri) were synthesized through facile hydrothermal and subsequent sulfuration processes without any template. These non-precious HC-NiMoS/Ti...Novel hierarchical coral-like Ni-Mo sulfides on Ti mesh (denoted as HC-NiMoSfri) were synthesized through facile hydrothermal and subsequent sulfuration processes without any template. These non-precious HC-NiMoS/Ti hybrids were explored as bifunctional catalysts for urea-based overall water splitting, including the anodic urea oxygen evolution reaction (UOR) and cathodic hydrogen evolution reaction (HER). Due to the highly exposed active sites, excellent charge transfer ability, and good synergistic effects from multi-component reactions, the HC-NiMoS/Ti hybrid exhibited superior activity and high stability, and only a cell voltage of 1.59 V was required to deliver 10 mA.cm-2 current density in an electrolyte of 1.0 M KOH with 0.5 M urea.展开更多
Electrochemical water splitting is a sustainable and feasible strategy for hydrogen production but is hampered by the sluggish anodic oxygen evolution reaction(OER).Herein,an effective approach is introduced to signif...Electrochemical water splitting is a sustainable and feasible strategy for hydrogen production but is hampered by the sluggish anodic oxygen evolution reaction(OER).Herein,an effective approach is introduced to significantly decrease the cell voltage by replacing the anodic OER with a urea oxidation reaction(UOR).A Ni_(2)P/NiMoP nanosheet catalyst with a hierarchical architecture is uniformly grown on a nickel foam(NF)substrate through a simple hydrothermal and phosphorization method.The Ni_(2)P/NiMoP achieves impressive HER activity,with a low overpotential of only 22 mV at 10 mA cm^(-2)and a low Tafel slope of 34.5 mV dec^(−1).In addition,the oxidation voltage is significantly reduced from 1.49 V to 1.33 V after the introduction of 0.33 M urea.Notably,a two-electrode electrolyzer employing Ni_(2)P/NiMoP as a bifunctional catalyst exhibits a current density of 10 mA cm^(-2)at a cell voltage of 1.35 V and excellent long-term durability after 80 h.展开更多
文摘Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nickel foam has been developed as a bifunctional electrocatalyst for urea oxidation and hydrogen evolution.The NiMoO_(4)‐200/NF catalyst exhibits efficient activity toward hydrogen evolution reaction with a low overpotential of only 68 mV in 1.0 mol/L KOH to gain a current density of 10 mA cm^(–2).The NiMoO_(4)‐300/NF catalyst exhibits a prominent oxygen evolution reaction(OER)catalytic activity with an overpotential of 288 mV at 50 mA cm^(–2),as well as for urea oxidation reaction with an ultralow potential of 1.36 V at 10 mA cm^(–2).The observed difference in electrocatalytic activity and selectivity,derived by temperature variation,is ascribed to different lattice oxygen contents.The lattice oxygen of NiMoO_(4)‐300/NF is more than that of NiMoO_(4)‐200/NF,and the lattice oxygen is conducive to the progress of OER.A urea electrolyzer was assembled with Ni‐MoO_(4)‐200/NF and NiMoO_(4)‐300/NF as cathode and anode respectively,delivering a current density of 10 mA cm^(–2)at a cell voltage of merely 1.38 V.The NiMoO_(4)nanorod arrays has also been successfully applied for photovoltage‐driven urea electrolysis and hydrogen production,revealing its great potential for solar‐driven energy conversion.
基金Supported by the Key Laboratory of Rare Earth Functional Materials of Shanghai City,China(No.07dz22303)the Key Scientific and Technological Project of Shanghai City,China(No.09391912100)
文摘2,4-Dichlorophenoxyacetyl(thio)urea and S-(+)-3-methyl-2-(4-chlorophenyl)butyramides were synthesized via acylation,aminolysis,esterification and addition reactions,and the partial new compounds have desirable bioactive activity.
文摘Novel hierarchical coral-like Ni-Mo sulfides on Ti mesh (denoted as HC-NiMoSfri) were synthesized through facile hydrothermal and subsequent sulfuration processes without any template. These non-precious HC-NiMoS/Ti hybrids were explored as bifunctional catalysts for urea-based overall water splitting, including the anodic urea oxygen evolution reaction (UOR) and cathodic hydrogen evolution reaction (HER). Due to the highly exposed active sites, excellent charge transfer ability, and good synergistic effects from multi-component reactions, the HC-NiMoS/Ti hybrid exhibited superior activity and high stability, and only a cell voltage of 1.59 V was required to deliver 10 mA.cm-2 current density in an electrolyte of 1.0 M KOH with 0.5 M urea.
基金This work was financially supported by the National Natural Science Foundation of China(52025013,51622102)Ministry of Science and Technology of China MOST(2018YFB1502101)+1 种基金the 111 Project(B12015)the Fundamental Research Funds for the Central Uni-versities(63191523,63191746).
文摘Electrochemical water splitting is a sustainable and feasible strategy for hydrogen production but is hampered by the sluggish anodic oxygen evolution reaction(OER).Herein,an effective approach is introduced to significantly decrease the cell voltage by replacing the anodic OER with a urea oxidation reaction(UOR).A Ni_(2)P/NiMoP nanosheet catalyst with a hierarchical architecture is uniformly grown on a nickel foam(NF)substrate through a simple hydrothermal and phosphorization method.The Ni_(2)P/NiMoP achieves impressive HER activity,with a low overpotential of only 22 mV at 10 mA cm^(-2)and a low Tafel slope of 34.5 mV dec^(−1).In addition,the oxidation voltage is significantly reduced from 1.49 V to 1.33 V after the introduction of 0.33 M urea.Notably,a two-electrode electrolyzer employing Ni_(2)P/NiMoP as a bifunctional catalyst exhibits a current density of 10 mA cm^(-2)at a cell voltage of 1.35 V and excellent long-term durability after 80 h.