The proliferation of textual data in society currently is overwhelming, in particular, unstructured textual data is being constantly generated via call centre logs, emails, documents on the web, blogs, tweets, custome...The proliferation of textual data in society currently is overwhelming, in particular, unstructured textual data is being constantly generated via call centre logs, emails, documents on the web, blogs, tweets, customer comments, customer reviews, etc.While the amount of textual data is increasing rapidly, users ability to summarise, understand, and make sense of such data for making better business/living decisions remains challenging. This paper studies how to analyse textual data, based on layered software patterns, for extracting insightful user intelligence from a large collection of documents and for using such information to improve user operations and performance.展开更多
To solve the problem of information fusion from multiple sources in innovation alliances, an information fusion model based on the Bayesian network is presented. The multi-source information fusion process of innovati...To solve the problem of information fusion from multiple sources in innovation alliances, an information fusion model based on the Bayesian network is presented. The multi-source information fusion process of innovation alliances was classified into three layers, namely, the information perception layer, the feature clustering layer,and the decision fusion layer. The agencies in the alliance were defined as sensors through which information is perceived and obtained, and the features were clustered. Finally, various types of information were fused by the innovation alliance based on the fusion algorithm to achieve complete and comprehensive information. The model was applied to a study on economic information prediction, where the accuracy of the fusion results was higher than that from a single source and the errors obtained were also smaller with the MPE less than 3%, which demonstrates the proposed fusion method is more effective and reasonable. This study provides a reasonable basis for decision-making of innovation alliances.展开更多
文摘The proliferation of textual data in society currently is overwhelming, in particular, unstructured textual data is being constantly generated via call centre logs, emails, documents on the web, blogs, tweets, customer comments, customer reviews, etc.While the amount of textual data is increasing rapidly, users ability to summarise, understand, and make sense of such data for making better business/living decisions remains challenging. This paper studies how to analyse textual data, based on layered software patterns, for extracting insightful user intelligence from a large collection of documents and for using such information to improve user operations and performance.
基金supported by the National Natural Science Foundation of China(Nos.71472053,71429001,and91646105)
文摘To solve the problem of information fusion from multiple sources in innovation alliances, an information fusion model based on the Bayesian network is presented. The multi-source information fusion process of innovation alliances was classified into three layers, namely, the information perception layer, the feature clustering layer,and the decision fusion layer. The agencies in the alliance were defined as sensors through which information is perceived and obtained, and the features were clustered. Finally, various types of information were fused by the innovation alliance based on the fusion algorithm to achieve complete and comprehensive information. The model was applied to a study on economic information prediction, where the accuracy of the fusion results was higher than that from a single source and the errors obtained were also smaller with the MPE less than 3%, which demonstrates the proposed fusion method is more effective and reasonable. This study provides a reasonable basis for decision-making of innovation alliances.