A data-space inversion(DSI)method has been recently proposed and successfully applied to the history matching and production prediction of reservoirs.Based on Bayesian theory,DSI can directly and effectively obtain go...A data-space inversion(DSI)method has been recently proposed and successfully applied to the history matching and production prediction of reservoirs.Based on Bayesian theory,DSI can directly and effectively obtain good posterior flow predictions without inversion of geological parameters of reservoir model.This paper presents an improved DSI method to fast predict reservoir state fields(e.g.saturation and pressure profiles)via observed production data.Firstly,a large number of production curves and state data are generated by reservoir model simulation to expand the data space of original DSI.Then,efficient history matching only on the observed production data is carried out via the original DSI to obtain related parameters which reflects the weight of the real reservoir model relative to prior reservoir models.Finally,those parameters are used to predict the oil saturation and pressure profiles of the real reservoir model by combining large amounts of state data of prior reservoir models.Two examples including conventional heterogeneous and unconventional fractured reservoir are implemented to test the performances of predicting saturation and pressure profiles of this improved DSI method.Besides,this method is also tested in a real field and the obtained results show the high computational efficiency and high accuracy of the practical application of this method.展开更多
On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to...On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.展开更多
This paper reviews the utilization of Big Data analytics,as an emerging trend,in the upstream and downstream oil and gas industry.Big Data or Big Data analytics refers to a new technology which can be employed to hand...This paper reviews the utilization of Big Data analytics,as an emerging trend,in the upstream and downstream oil and gas industry.Big Data or Big Data analytics refers to a new technology which can be employed to handle large datasets which include six main characteristics of volume,variety,velocity,veracity,value,and complexity.With the recent advent of data recording sensors in exploration,drilling,and production operations,oil and gas industry has become a massive data intensive industry.Analyzing seismic and micro-seismic data,improving reservoir characterization and simulation,reducing drilling time and increasing drilling safety,optimization of the performance of production pumps,improved petrochemical asset management,improved shipping and transportation,and improved occupational safety are among some of the applications of Big Data in oil and gas industry.Although the oil and gas industry has become more interested in utilizing Big Data analytics recently,but,there are still challenges mainly due to lack of business support and awareness about the Big Data within the industry.Furthermore,quality of the data and understanding the complexity of the problem are also among the challenging parameters facing the application of Big Data.展开更多
A new fault identification method, which is called the apparent current method, based on the parameter variation of apparent current is proposed after the analysis of the limitations of the fault interpretation method...A new fault identification method, which is called the apparent current method, based on the parameter variation of apparent current is proposed after the analysis of the limitations of the fault interpretation method for the wide field electromagnetic data in the non-seismic exploration for oil and gas exploration. This method takes the study of the wide field electromagnetic theory and the mechanism of the fault generation, this method takes the wide field electromagnetic data as the research object, and establishes the connection between the geoelectric section and the virtual equivalent circuit, and then uses the virtual equivalent circuit as the carrier, and applies the theoretical equation of the apparent current, and combines the geological background of the study area to achieve scientific inference for location of fault in wide field electromagnetic exploration data. Theoretical model tests and the application of practical data proved that the location of underground fault can be accurately deduced by the trend of apparent current in underground space, reducing the multiple interpretations of electromagnetic data interpretation. At the same time, it also verified the correctness of the theory of apparent current and the feasibility of the method of apparent current.展开更多
基金supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(No.ZJW-2019-04)Cooperative Innovation Center of Unconventional Oil and Gas(Ministry of Education&Hubei Province),Yangtze University(No.UOG2020-17)the National Natural Science Foundation of China(No.51874044,51922007)。
文摘A data-space inversion(DSI)method has been recently proposed and successfully applied to the history matching and production prediction of reservoirs.Based on Bayesian theory,DSI can directly and effectively obtain good posterior flow predictions without inversion of geological parameters of reservoir model.This paper presents an improved DSI method to fast predict reservoir state fields(e.g.saturation and pressure profiles)via observed production data.Firstly,a large number of production curves and state data are generated by reservoir model simulation to expand the data space of original DSI.Then,efficient history matching only on the observed production data is carried out via the original DSI to obtain related parameters which reflects the weight of the real reservoir model relative to prior reservoir models.Finally,those parameters are used to predict the oil saturation and pressure profiles of the real reservoir model by combining large amounts of state data of prior reservoir models.Two examples including conventional heterogeneous and unconventional fractured reservoir are implemented to test the performances of predicting saturation and pressure profiles of this improved DSI method.Besides,this method is also tested in a real field and the obtained results show the high computational efficiency and high accuracy of the practical application of this method.
文摘On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.
文摘This paper reviews the utilization of Big Data analytics,as an emerging trend,in the upstream and downstream oil and gas industry.Big Data or Big Data analytics refers to a new technology which can be employed to handle large datasets which include six main characteristics of volume,variety,velocity,veracity,value,and complexity.With the recent advent of data recording sensors in exploration,drilling,and production operations,oil and gas industry has become a massive data intensive industry.Analyzing seismic and micro-seismic data,improving reservoir characterization and simulation,reducing drilling time and increasing drilling safety,optimization of the performance of production pumps,improved petrochemical asset management,improved shipping and transportation,and improved occupational safety are among some of the applications of Big Data in oil and gas industry.Although the oil and gas industry has become more interested in utilizing Big Data analytics recently,but,there are still challenges mainly due to lack of business support and awareness about the Big Data within the industry.Furthermore,quality of the data and understanding the complexity of the problem are also among the challenging parameters facing the application of Big Data.
基金Supported by the Petro China Science and Technology Major Project(2017E-11)
文摘A new fault identification method, which is called the apparent current method, based on the parameter variation of apparent current is proposed after the analysis of the limitations of the fault interpretation method for the wide field electromagnetic data in the non-seismic exploration for oil and gas exploration. This method takes the study of the wide field electromagnetic theory and the mechanism of the fault generation, this method takes the wide field electromagnetic data as the research object, and establishes the connection between the geoelectric section and the virtual equivalent circuit, and then uses the virtual equivalent circuit as the carrier, and applies the theoretical equation of the apparent current, and combines the geological background of the study area to achieve scientific inference for location of fault in wide field electromagnetic exploration data. Theoretical model tests and the application of practical data proved that the location of underground fault can be accurately deduced by the trend of apparent current in underground space, reducing the multiple interpretations of electromagnetic data interpretation. At the same time, it also verified the correctness of the theory of apparent current and the feasibility of the method of apparent current.