By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline...By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.展开更多
After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i....After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China's quantitative geoscience and geological big data's rapid development meets present requirements and has kept up with international levels. This paper presents China's decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China's grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.展开更多
With the rapid development of technology,geological big data is increasing explosively,and plays an increasingly important position in the national economy(Zhang and Zhou,2017;Zhou et al.,2018).Governments and agencie...With the rapid development of technology,geological big data is increasing explosively,and plays an increasingly important position in the national economy(Zhang and Zhou,2017;Zhou et al.,2018).Governments and agencies attach great importance to the open internet service of geological big data and information at home,and abroad(Yan et al.,2013;Guo et al.,2014).The basic norms of western countries’geological data information services are rich and varied products.展开更多
On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and ...On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and so on.And it also expanded the data contents,such as the indoor and outdoor data,the overground and underground data,panoramic data and real data.It also introduced the contents of historical geographical information in different periods and real-time location information,address information of sensing equipment,real-time perception and interpreting information.It has overcome the difficulties of real-time access of Internet of Things(IoT)perception,multi-node collaboration,64-bit support,cluster deployment and has the characteristics of spatio-temporal management,ondemand service,large data analysis and micro-service architecture.It built spatio-temporal information big data center and spatio-temporal information cloud platform,realized the convergence and management of the distributed big data,deeply applied for land,transportation,environmental protection,police and subdistrict five areas,by supporting the integrated application of multi-source information and supporting intelligent deep application.In the aspect of hardware environment construction,according to the top-level design and unified arrangement of Smart Weifang,the WFCP was migrated to Weifang cloud computing center,to achieve the on-demand computing resources and dynamic scheduling load-based computing resources,to support the generalizing load map application.展开更多
Marine big data are characterized by a large amount and complex structures,which bring great challenges to data management and retrieval.Based on the GeoSOT Grid Code and the composite index structure of the MongoDB d...Marine big data are characterized by a large amount and complex structures,which bring great challenges to data management and retrieval.Based on the GeoSOT Grid Code and the composite index structure of the MongoDB database,this paper proposes a spatio-temporal grid index model(STGI)for efficient optimized query of marine big data.A spatio-temporal secondary index is created on the spatial code and time code columns to build a composite index in the MongoDB database used for the storage of massive marine data.Multiple comparative experiments demonstrate that the retrieval efficiency adopting the STGI approach is increased by more than two to three times compared with other index models.Through theoretical analysis and experimental verification,the conclusion could be achieved that the STGI model is quite suitable for retrieving large-scale spatial data with low time frequency,such as marine big data.展开更多
With tremendous growing interests in Big Data, the performance improvement of Big Data systems becomes more and more important. Among many steps, the first one is to analyze and diagnose performance bottlenecks of the...With tremendous growing interests in Big Data, the performance improvement of Big Data systems becomes more and more important. Among many steps, the first one is to analyze and diagnose performance bottlenecks of the Big Data systems. Currently, there are two major solutions. One is the pure data-driven diagnosis approach, which may be very time-consuming;the other is the rule-based analysis method, which usually requires prior knowledge. For Big Data applications like Spark workloads, we observe that the tasks in the same stages normally execute the same or similar codes on each data partition. On basis of the stage similarity and distributed characteristics of Big Data systems, we analyze the behaviors of the Big Data applications in terms of both system and micro-architectural metrics of each stage. Furthermore, for different performance problems, we propose a hybrid approach that combines prior rules and machine learning algorithms to detect performance anomalies, such as straggler tasks, task assignment imbalance, data skew, abnormal nodes and outlier metrics. Following this methodology, we design and implement a lightweight, extensible tool, named HybridTune, and measure the overhead and anomaly detection effectiveness of HybridTune using the BigDataBench benchmarks. Our experiments show that the overhead of HybridTune is only 5%, and the accuracy of outlier detection algorithm reaches up to 93%. Finally, we report several use cases diagnosing Spark and Hadoop workloads using BigDataBench, which demonstrates the potential use of HybridTune.展开更多
The Xingmeng orogenic belt is located in the eastern section of the Central Asian orogenic belt,which is one of the key areas to study the formation and evolution of the Central Asian orogenic belt.At present,there is...The Xingmeng orogenic belt is located in the eastern section of the Central Asian orogenic belt,which is one of the key areas to study the formation and evolution of the Central Asian orogenic belt.At present,there is a huge controversy over the closure time of the Paleo-Asian Ocean in the Xingmeng orogenic belt.One of the reasons is that the genetic tectonic setting of the Carboniferous volcanic rocks is not clear.Due to the diversity of volcanic rock geochemical characteristics and its related interpretations,there are two different views on the tectonic setting of Carboniferous volcanic rocks in the Xingmeng orogenic belt:island arc and continental rift.In recent years,it is one of the important development directions in the application of geological big data technology to analyze geochemical data based on machine learning methods and further infer the tectonic background of basalt.This paper systematically collects Carboniferous basic rock data from Dongwuqi area of Inner Mongolia,Keyouzhongqi area of Inner Mongolia and Beishan area in the southern section of the Central Asian Orogenic Belt.Random forest algorithm is used for training sets of major elements and trace elements in global island arc basalt and rift basalt,and then the trained model is used to predict the tectonic setting of the Carboniferous magmatic rock samples in the Xingmeng orogenic belt.The prediction results shows that the island arc probability of most of the research samples is between 0.65 and 1,which indicates that the island arc tectonic setting is more credible.In this paper,it is concluded that magmatism in the Beishan area of the southern part of the Central Asian Orogenic belt in the Early Carboniferous may have formed in the heyday of subduction,while the Xingmeng orogenic belt in the Late Carboniferous may have been in the late subduction stage to the collision or even the early rifting stage.This temporal and spatial evolution shows that the subduction of the Paleo-Asian Ocean is different from west to east.Therefore,the research results of this paper show that the subduction of the Xingmeng orogenic belt in the Carboniferous has not ended yet.展开更多
为研究地质学领域的大数据和人工智能研究现状、热点和前沿,在中国知网(CNKI)核心期刊和Web of Science(WoS)核心数据库收集了2000—2022年相关中文文献3600篇、英文文献1803篇,利用社区结构分析软件CiteSpace,从合作作者、研究国家、...为研究地质学领域的大数据和人工智能研究现状、热点和前沿,在中国知网(CNKI)核心期刊和Web of Science(WoS)核心数据库收集了2000—2022年相关中文文献3600篇、英文文献1803篇,利用社区结构分析软件CiteSpace,从合作作者、研究国家、研究机构、关键词聚类、关键词时空分布图谱等进行可视化分析,并统计了2021—2022年间,地质学领域国际顶级期刊(综合影响因子10以上)的文献进行前沿分析。分析结果表明,近10年内该研究领域全球累计发文量激增,以中国为代表的亚洲国家和以美国为代表的欧美国家研究为主,双方累计发文量相差不大,论文中介中心性欧美国家普遍较高。我国研究机构之间的交流合作居多,与国外的研究机构交流合作较少,国外研究机构则与之相反。该领域以应用机器学习类方法、知识图谱构建等,在地质灾害防治、地震解释、石油与天然气勘查、固体矿产资源预测等方向进行的科学研究为研究热点,以深度学习、集成学习、智能平台搭建等为手段的地球演化过程中的重大地质事件研究、全球性气候变化、极地及海洋地质研究、数字地质建模及定量分析、地震预报、地灾易发性精准评估等为研究前沿。展开更多
A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized f...A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection.展开更多
文摘By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.
文摘After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China's quantitative geoscience and geological big data's rapid development meets present requirements and has kept up with international levels. This paper presents China's decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China's grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.
基金granted by the National Key R&D Program of China(Grant No.2016YFC0600510)the Ministry of Land and Resources"Twelfth Five-Year Plan"Key Projects(Grant No.1212011220352).
文摘With the rapid development of technology,geological big data is increasing explosively,and plays an increasingly important position in the national economy(Zhang and Zhou,2017;Zhou et al.,2018).Governments and agencies attach great importance to the open internet service of geological big data and information at home,and abroad(Yan et al.,2013;Guo et al.,2014).The basic norms of western countries’geological data information services are rich and varied products.
文摘On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and so on.And it also expanded the data contents,such as the indoor and outdoor data,the overground and underground data,panoramic data and real data.It also introduced the contents of historical geographical information in different periods and real-time location information,address information of sensing equipment,real-time perception and interpreting information.It has overcome the difficulties of real-time access of Internet of Things(IoT)perception,multi-node collaboration,64-bit support,cluster deployment and has the characteristics of spatio-temporal management,ondemand service,large data analysis and micro-service architecture.It built spatio-temporal information big data center and spatio-temporal information cloud platform,realized the convergence and management of the distributed big data,deeply applied for land,transportation,environmental protection,police and subdistrict five areas,by supporting the integrated application of multi-source information and supporting intelligent deep application.In the aspect of hardware environment construction,according to the top-level design and unified arrangement of Smart Weifang,the WFCP was migrated to Weifang cloud computing center,to achieve the on-demand computing resources and dynamic scheduling load-based computing resources,to support the generalizing load map application.
基金This research was funded by the National Key Research and Development Plan(2018YFB0505300)the Guangxi Science and Technology Major Project(AA18118025)+1 种基金the Opening Foundation of Key Laboratory of Environment Change and Resources Use in Beibu Gulf,Ministry of Education(Nanning Normal University)Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation(Nanning Normal University)(No.NNNU-KLOP-K1905).
文摘Marine big data are characterized by a large amount and complex structures,which bring great challenges to data management and retrieval.Based on the GeoSOT Grid Code and the composite index structure of the MongoDB database,this paper proposes a spatio-temporal grid index model(STGI)for efficient optimized query of marine big data.A spatio-temporal secondary index is created on the spatial code and time code columns to build a composite index in the MongoDB database used for the storage of massive marine data.Multiple comparative experiments demonstrate that the retrieval efficiency adopting the STGI approach is increased by more than two to three times compared with other index models.Through theoretical analysis and experimental verification,the conclusion could be achieved that the STGI model is quite suitable for retrieving large-scale spatial data with low time frequency,such as marine big data.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB1000601
文摘With tremendous growing interests in Big Data, the performance improvement of Big Data systems becomes more and more important. Among many steps, the first one is to analyze and diagnose performance bottlenecks of the Big Data systems. Currently, there are two major solutions. One is the pure data-driven diagnosis approach, which may be very time-consuming;the other is the rule-based analysis method, which usually requires prior knowledge. For Big Data applications like Spark workloads, we observe that the tasks in the same stages normally execute the same or similar codes on each data partition. On basis of the stage similarity and distributed characteristics of Big Data systems, we analyze the behaviors of the Big Data applications in terms of both system and micro-architectural metrics of each stage. Furthermore, for different performance problems, we propose a hybrid approach that combines prior rules and machine learning algorithms to detect performance anomalies, such as straggler tasks, task assignment imbalance, data skew, abnormal nodes and outlier metrics. Following this methodology, we design and implement a lightweight, extensible tool, named HybridTune, and measure the overhead and anomaly detection effectiveness of HybridTune using the BigDataBench benchmarks. Our experiments show that the overhead of HybridTune is only 5%, and the accuracy of outlier detection algorithm reaches up to 93%. Finally, we report several use cases diagnosing Spark and Hadoop workloads using BigDataBench, which demonstrates the potential use of HybridTune.
文摘The Xingmeng orogenic belt is located in the eastern section of the Central Asian orogenic belt,which is one of the key areas to study the formation and evolution of the Central Asian orogenic belt.At present,there is a huge controversy over the closure time of the Paleo-Asian Ocean in the Xingmeng orogenic belt.One of the reasons is that the genetic tectonic setting of the Carboniferous volcanic rocks is not clear.Due to the diversity of volcanic rock geochemical characteristics and its related interpretations,there are two different views on the tectonic setting of Carboniferous volcanic rocks in the Xingmeng orogenic belt:island arc and continental rift.In recent years,it is one of the important development directions in the application of geological big data technology to analyze geochemical data based on machine learning methods and further infer the tectonic background of basalt.This paper systematically collects Carboniferous basic rock data from Dongwuqi area of Inner Mongolia,Keyouzhongqi area of Inner Mongolia and Beishan area in the southern section of the Central Asian Orogenic Belt.Random forest algorithm is used for training sets of major elements and trace elements in global island arc basalt and rift basalt,and then the trained model is used to predict the tectonic setting of the Carboniferous magmatic rock samples in the Xingmeng orogenic belt.The prediction results shows that the island arc probability of most of the research samples is between 0.65 and 1,which indicates that the island arc tectonic setting is more credible.In this paper,it is concluded that magmatism in the Beishan area of the southern part of the Central Asian Orogenic belt in the Early Carboniferous may have formed in the heyday of subduction,while the Xingmeng orogenic belt in the Late Carboniferous may have been in the late subduction stage to the collision or even the early rifting stage.This temporal and spatial evolution shows that the subduction of the Paleo-Asian Ocean is different from west to east.Therefore,the research results of this paper show that the subduction of the Xingmeng orogenic belt in the Carboniferous has not ended yet.
文摘为研究地质学领域的大数据和人工智能研究现状、热点和前沿,在中国知网(CNKI)核心期刊和Web of Science(WoS)核心数据库收集了2000—2022年相关中文文献3600篇、英文文献1803篇,利用社区结构分析软件CiteSpace,从合作作者、研究国家、研究机构、关键词聚类、关键词时空分布图谱等进行可视化分析,并统计了2021—2022年间,地质学领域国际顶级期刊(综合影响因子10以上)的文献进行前沿分析。分析结果表明,近10年内该研究领域全球累计发文量激增,以中国为代表的亚洲国家和以美国为代表的欧美国家研究为主,双方累计发文量相差不大,论文中介中心性欧美国家普遍较高。我国研究机构之间的交流合作居多,与国外的研究机构交流合作较少,国外研究机构则与之相反。该领域以应用机器学习类方法、知识图谱构建等,在地质灾害防治、地震解释、石油与天然气勘查、固体矿产资源预测等方向进行的科学研究为研究热点,以深度学习、集成学习、智能平台搭建等为手段的地球演化过程中的重大地质事件研究、全球性气候变化、极地及海洋地质研究、数字地质建模及定量分析、地震预报、地灾易发性精准评估等为研究前沿。
基金supported by the National Key Research and Development Program of China(2021YFB3901205)the National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection.