期刊文献+
共找到1,331篇文章
< 1 2 67 >
每页显示 20 50 100
Research on the Developmental Trend of Data Journalism under the Background and Time of Big Data
1
作者 Hui Zhi 《International Journal of Technology Management》 2016年第1期42-44,共3页
In this paper, we conduct research on the developmental trend of the data journalism under the current background and the time of big data. Big data is not only a concept, but also a description of a state of society... In this paper, we conduct research on the developmental trend of the data journalism under the current background and the time of big data. Big data is not only a concept, but also a description of a state of society: in the era of the big data, data become important social resources and production data, the news media is no exception. In the time of the data had not been so seriously, the core of the news resources is a reporter on the scene to get first-hand material, is based on the reporter can see, smell, feel the fact description, data is often only a supplementary role. However, in today' s era of big data, although the scene is also very important, but based on the various aspects of data mining and analysis and the depth of the formation of information has become more and more important. Our research proposes the novel paradigm for the issues that is meaningful. 展开更多
关键词 big data Developmental Trend data Journalism Contemporary Era and time.
下载PDF
Sentiment Drift Detection and Analysis in Real Time Twitter Data Streams
2
作者 E.Susi A.P.Shanthi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3231-3246,共16页
Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.... Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time.This work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real time.The framework also works on static data by converting them to data streams using the Kafka tool.The experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,respectively.Though the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic. 展开更多
关键词 Sentiment drift sentiment classification big data BERT real time data streams TWITTER
下载PDF
Cleaning of Multi-Source Uncertain Time Series Data Based on PageRank
3
作者 高嘉伟 孙纪舟 《Journal of Donghua University(English Edition)》 CAS 2023年第6期695-700,共6页
There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challe... There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challenge,we propose a new and convenient truth discovery method to handle time series data.A more accurate sample is closer to the truth and,consequently,to other accurate samples.Because the mutual-confirm relationship between sensors is very similar to the mutual-quote relationship between web pages,we evaluate sensor reliability based on PageRank and then estimate the truth by sensor reliability.Therefore,this method does not rely on smoothness assumptions or prior knowledge of the data.Finally,we validate the effectiveness and efficiency of the proposed method on real-world and synthetic data sets,respectively. 展开更多
关键词 big data data cleaning time series truth discovery PAGERANK
下载PDF
Time Optimization of Multiple Knowledge Transfers in the Big Data Environment 被引量:3
4
作者 Chuanrong Wu Evgeniya Zapevalova +1 位作者 Yingwu Chen Feng Li 《Computers, Materials & Continua》 SCIE EI 2018年第3期269-285,共17页
In the big data environment, enterprises must constantly assimilate big dataknowledge and private knowledge by multiple knowledge transfers to maintain theircompetitive advantage. The optimal time of knowledge transfe... In the big data environment, enterprises must constantly assimilate big dataknowledge and private knowledge by multiple knowledge transfers to maintain theircompetitive advantage. The optimal time of knowledge transfer is one of the mostimportant aspects to improve knowledge transfer efficiency. Based on the analysis of thecomplex characteristics of knowledge transfer in the big data environment, multipleknowledge transfers can be divided into two categories. One is the simultaneous transferof various types of knowledge, and the other one is multiple knowledge transfers atdifferent time points. Taking into consideration the influential factors, such as theknowledge type, knowledge structure, knowledge absorptive capacity, knowledge updaterate, discount rate, market share, profit contributions of each type of knowledge, transfercosts, product life cycle and so on, time optimization models of multiple knowledgetransfers in the big data environment are presented by maximizing the total discountedexpected profits (DEPs) of an enterprise. Some simulation experiments have beenperformed to verify the validity of the models, and the models can help enterprisesdetermine the optimal time of multiple knowledge transfer in the big data environment. 展开更多
关键词 big data knowledge transfer time optimization DEP simulation experiment
下载PDF
Urban Big Data and the Development of City Intelligence 被引量:14
5
作者 Yunhe Pan Yun Tian +2 位作者 Xiaolong Liu Dedao Gu Gang Hua 《Engineering》 SCIE EI 2016年第2期171-178,共8页
This study provides a definition for urban big data while exploring its features and applications of Chi- na's city intelligence. The differences between city intelligence in China and the "smart city" concept in o... This study provides a definition for urban big data while exploring its features and applications of Chi- na's city intelligence. The differences between city intelligence in China and the "smart city" concept in other countries are compared to highlight and contrast the unique definition and model for China's city intelligence in this paper. Furthermore, this paper examines the role of urban big data in city intel- ligence by showing that it not only serves as the cornerstone of this trend as it also plays a core role in the diffusion of city intelligence technology and serves as an inexhaustible resource for the sustained development of city intelligence. This study also points out the challenges of shaping and developing of China's urban big data. Considering the supporting and core role that urban big data plays in city intel- ligence, the study then expounds on the key points of urban big data, including infrastructure support, urban governance, public services, and economic and industrial development. Finally, this study points out that the utility of city intelligence as an ideal policy tool for advancing the goals of China's urban de- velopment. In conclusion, it is imperative that China make full use of its unique advantages-including using the nation's current state of development and resources, geographical advantages, and good hu- man relations-in subjective and objective conditions to promote the development of city intelligence through the proper application of urban big data. 展开更多
关键词 Urban big data City intelligence Ternary space Construction emphases
下载PDF
Quality control of marine big data——a case study of real-time observation station data in Qingdao 被引量:6
6
作者 QIAN Chengcheng LIU Aichao +4 位作者 HUANG Rui LIU Qingrong XU Wenkun ZHONG Shan YU Le 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1983-1993,共11页
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s... Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height. 展开更多
关键词 quality control REAL-time STATION data MARINE big data Xiaomaidao STATION MARINE DISASTER
下载PDF
“Deep-time Digital Basin” Based on Big Data and Artificial Intelligence 被引量:2
7
作者 FENG Zhiqing LIAN Peiqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第S01期14-16,共3页
1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zh... 1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zhang et al.,2016;Teng et al.,2016;Tian and Li,2018).The United States has built an information-sharing platform for state-owned scientific data as a national strategy. 展开更多
关键词 deep-time DIGITAL earth(DDE) deep-time DIGITAL basin(DDB) big data artificial intelligent knowledge base
下载PDF
A New Efficient Obstacle Avoidance Control Method for Cars Based on Big Data and Just-in-Time Modeling 被引量:1
8
作者 Tatsuya Kai 《Journal of Computer and Communications》 2018年第11期12-22,共11页
This paper provides a new obstacle avoidance control method for cars based on big data and just-in-time modeling. Just-in-time modeling is a new kind of data-driven control technique in the age of big data and is used... This paper provides a new obstacle avoidance control method for cars based on big data and just-in-time modeling. Just-in-time modeling is a new kind of data-driven control technique in the age of big data and is used in various real systems. The main property of the proposed method is that a gain and a control time which are parameters in the control input to avoid an encountered obstacle are computed from a database which includes a lot of driving data in various situations. Especially, the important advantage of the method is small computation time, and hence it realizes real-time obstacle avoidance control for cars. From some numerical simulations, it is showed that the new control method can make the car avoid various obstacles efficiently in comparison with the previous method. 展开更多
关键词 big data JUST-IN-time MODELING CARS OBSTACLE AVOIDANCE Control
下载PDF
Accelerated Expansion of Space, Dark Matter, Dark Energy and Big Bang Processes
9
作者 Auguste Meessen 《Journal of Modern Physics》 2017年第2期251-267,共17页
The accelerated expansion of our universe results from properties of dark matter particles deduced from Space-Time Quantization. This theory accounts for all possible elementary particles by considering a quantum of l... The accelerated expansion of our universe results from properties of dark matter particles deduced from Space-Time Quantization. This theory accounts for all possible elementary particles by considering a quantum of length a in addition to c and h. It appears that dark matter particles allow for fusion and fission processes. The resulting equilibrium enables the cosmic dark matter gas to produce dark energy in an adaptive way. It keeps the combined matter-energy density at a constant level, even when space is expanding. This accounts for the cosmological constant &Lambda;and the accelerated expansion of space without requiring any negative pressure. The Big Bang is related to G, c, h and a. It started with a “primeval photon” and led to the cosmic matter-antimatter asymmetry as well as inflation. 展开更多
关键词 Accelerated Expansion DARK MATTER DARK Energy space-time Quantization big Bang INFLATION Matter-Antimatter Asymmetry
下载PDF
Spatial Structure of China's E-commerce Express Logistics Network Based on Space of Flows 被引量:2
10
作者 LI Yuanjun WU Qitao +2 位作者 ZHANG Yuling HUANG Guangqing ZHANG Hongou 《Chinese Geographical Science》 SCIE CSCD 2023年第1期36-50,共15页
The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on... The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics. 展开更多
关键词 space of flows e-commerce express logistics urban logistics network logistics big data
下载PDF
Events Sourcing and Command Query Responsibility Segregation Based Fast Data Architecture
11
作者 Gérard Behou N’guessan Odilon Yapo Achiepo Jérôme Diako 《Open Journal of Applied Sciences》 CAS 2023年第2期198-206,共9页
With the advent of Big Data, the fields of Statistics and Computer Science coexist in current information systems. In addition to this, technological advances in embedded systems, in particular Internet of Things tech... With the advent of Big Data, the fields of Statistics and Computer Science coexist in current information systems. In addition to this, technological advances in embedded systems, in particular Internet of Things technologies, make it possible to develop real-time applications. These technological developments are disrupting Software Engineering because the use of large amounts of real-time data requires advanced thinking in terms of software architecture. The purpose of this article is to propose an architecture unifying not only Software Engineering and Big Data activities, but also batch and streaming architectures for the exploitation of massive data. This architecture has the advantage of making possible the development of applications and digital services exploiting very large volumes of data in real time;both for management needs and for analytical purposes. This architecture was tested on COVID-19 data as part of the development of an application for real-time monitoring of the evolution of the pandemic in Côte d’Ivoire using PostgreSQL, ELasticsearch, Kafka, Kafka Connect, NiFi, Spark, Node-Red and MoleculerJS to operationalize the architecture. 展开更多
关键词 Architecture Software Engineering big data data Engineering Real time
下载PDF
Exploring the Big Data Using a Rigorous and Quantitative Causality Analysis 被引量:2
12
作者 X. San Liang 《Journal of Computer and Communications》 2016年第5期53-59,共7页
Causal analysis is a powerful tool to unravel the data complexity and hence provide clues to achieving, say, better platform design, efficient interoperability and service management, etc. Data science will surely ben... Causal analysis is a powerful tool to unravel the data complexity and hence provide clues to achieving, say, better platform design, efficient interoperability and service management, etc. Data science will surely benefit from the advancement in this field. Here we introduce into this community a recent finding in physics on causality and the subsequent rigorous and quantitative causality analysis. The resulting formula is concise in form, involving only the common statistics namely sample covariance. A corollary is that causation implies correlation, but not vice versa, resolving the long-standing philosophical debate over correlation versus causation. The applicability to big data analysis is validated with time series purportedly generated with hidden processes. As a demonstration, a preliminary application to the gross domestic product (GDP) data of United States, China, and Japan reveals some subtle USA-China-Japan relations in certain periods.   展开更多
关键词 CAUSALITY big data Information Flow time Series Causal Network
下载PDF
On analyzing space-time distribution of evaporation duct height over the global ocean 被引量:7
13
作者 YANG Kunde ZHANG Qi +3 位作者 SHI Yang HE Zhengyao LEI Bo HAN Yina 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期20-29,共10页
The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and ... The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and spatial resolutions of 1 h and 0.313°x0.312°, respectively. The efficiency of the analysis was evaluated by processing weather buoy data from the Pacific Ocean and measuring propagation loss in the Yellow Sea of China. The distribution features of evaporation duct height (EDH) and the related meteorological factors for different seas were analyzed. The global EDH is generally high and demonstrates a latitudinal distribution for oceans at low latitudes. The average EDH is approximately 11 m over oceans beside the equator with a latitude of less than 20°. The reasons for the formation of the global EDH features were also analyzed for different sea areas. 展开更多
关键词 evaporation duct reanalysis data electromagnetic wave space-time distributions
下载PDF
Residential Differentiation Based on Reachability and Spatial Clustering : A Case Study of the Main Urban Area of Wuhan City
14
作者 Siwei SUN Hailu ZHANG Wanqing XU 《Meteorological and Environmental Research》 2023年第6期47-52,共6页
The differentiation of urban residential space is a key and hot topic in urban research, which has very important theoretical significance for urban development and residential choice. In this paper, web crawler techn... The differentiation of urban residential space is a key and hot topic in urban research, which has very important theoretical significance for urban development and residential choice. In this paper, web crawler technology is used to collect urban big data. Using spatial analysis and clustering, the differentiation law of residential space in the main urban area of Wuhan is revealed. The residential differentiation is divided into five types: "Garden" community, "Guozi" community, "Wangjiangshan" community, "Yashe" community, and "Shuxin" community. The "Garden" community is aimed at the elderly, with good medical accessibility and open space around the community. The "Guozi Community" is aimed at young people, and the community has accessibility to good educational and commercial facilities. The "Wangjiangshan" community is oriented towards the social elite group, with beautiful natural living environment, close to the city core, and convenient transportation. The "Yashe" community is aimed at the general income group, and its location is characterized by being adjacent to commercial districts and convenient transportation. The "Shuxin" community is aimed at the middle and lower income groups, far from the city center, and the living environment quality is not high. 展开更多
关键词 big data Residential space Spatial differentiation Spatial clustering Functional zoning
下载PDF
Quantitative Expression of Paleogeographic Information Based on Big Data 被引量:3
15
作者 ZHAO Yingquan ZHONG Hanting +9 位作者 XU Shenglin HOU Mingcai HU Xiumian ZHANG Lei GAO Yuan ZHANG Laiming LIU Yu CAO Haiyang MU Caineng CAI Pengcheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第S01期83-85,共3页
Paleogeographic analysis accounts for an essential part of geological research,making important contributions in the reconstruction of depositional environments and tectonic evolution histories(Ingalls et al.,2016;Mer... Paleogeographic analysis accounts for an essential part of geological research,making important contributions in the reconstruction of depositional environments and tectonic evolution histories(Ingalls et al.,2016;Merdith et al.,2017),the prediction of mineral resource distributions in continental sedimentary basins(Sun and Wang,2009),and the investigation of climate patterns and ecosystems(Cox,2016). 展开更多
关键词 PALEOGEOGRAPHY big data SEDIMENTOLOGY Deep-time Digital Earth(DDE)
下载PDF
A Survey of Time Series Data Visualization Methods 被引量:1
16
作者 Wangdong Jiang Jie Wu +3 位作者 Guang Sun Yuxin Ouyang Jing Li Shuang Zhou 《Journal of Quantum Computing》 2020年第2期105-117,共13页
In the era of big data,the general public is more likely to access big data,but they wouldn’t like to analyze the data.Therefore,the traditional data visualization with certain professionalism is not easy to be accep... In the era of big data,the general public is more likely to access big data,but they wouldn’t like to analyze the data.Therefore,the traditional data visualization with certain professionalism is not easy to be accepted by the general public living in the fast pace.Under this background,a new general visualization method for dynamic time series data emerges as the times require.Time series data visualization organizes abstract and hard-to-understand data into a form that is easily understood by the public.This method integrates data visualization into short videos,which is more in line with the way people get information in modern fast-paced lifestyles.The modular approach also facilitates public participation in production.This paper summarizes the dynamic visualization methods of time series data ranking,studies the relevant literature,shows its value and existing problems,and gives corresponding suggestions and future research prospects. 展开更多
关键词 Dynamic visualization historical ranking of time series data VIDEO big data
下载PDF
Direct data domain approach to space-time adaptive processing 被引量:2
17
作者 Wen Xiaoqin Han Chongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期59-64,共6页
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi... In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment. 展开更多
关键词 space-time adaptive processing direct data domain interference suppression.
下载PDF
Integrated Real-Time Big Data Stream Sentiment Analysis Service 被引量:1
18
作者 Sun Sunnie Chung Danielle Aring 《Journal of Data Analysis and Information Processing》 2018年第2期46-66,共21页
Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with o... Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature. 展开更多
关键词 SENtimeNT ANALYSIS REAL-time Text ANALYSIS OPINION ANALYSIS big data An-alytics
下载PDF
Optimal Model of Continuous Knowledge Transfer in the Big Data Environment
19
作者 Chuanrong Wu Evgeniya Zapevalova +2 位作者 Yingwu Chen Deming Zeng FrancisLiu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第7期89-107,共19页
With market competition becoming fiercer,enterprises must update their products by constantly assimilating new big data knowledge and private knowledge to maintain their market shares at different time points in the b... With market competition becoming fiercer,enterprises must update their products by constantly assimilating new big data knowledge and private knowledge to maintain their market shares at different time points in the big data environment.Typically,there is mutual influence between each knowledge transfer if the time interval is not too long.It is necessary to study the problem of continuous knowledge transfer in the big data environment.Based on research on one-time knowledge transfer,a model of continuous knowledge transfer is presented,which can consider the interaction between knowledge transfer and determine the optimal knowledge transfer time at different time points in the big data environment.Simulation experiments were performed by adjusting several parameters.The experimental results verified the model’s validity and facilitated conclusions regarding their practical application values.The experimental results can provide more effective decisions for enterprises that must carry out continuous knowledge transfer in the big data environment. 展开更多
关键词 big data KNOWLEDGE TRANSFER optimization model simulation EXPERIMENT different time POINTS
下载PDF
Literature Review of Marketing theory based on Big Data
20
作者 Zhang Haiyang Li Pengju 《International English Education Research》 2014年第7期49-51,共3页
Since the concept of big data was proposed, the theory on big data is concerned by public, academics, market watchers, researcher and so on, people explore all aspects of the Big Data Time, more than in academic, it h... Since the concept of big data was proposed, the theory on big data is concerned by public, academics, market watchers, researcher and so on, people explore all aspects of the Big Data Time, more than in academic, it has an impact on all areas in marketing,we collect some papers and extract its viewpoints that involve the theory, methods in this article, we hope that it helps to do research on the theory of big data in the field of marketing. 展开更多
关键词 big data time big data MARKETING
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部