The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a w...The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models.展开更多
Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved c...Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved computing and storage. Management has become easier, andOAM costs have been significantly reduced. Cloud desktop technology is develop ing rapidly. With this technology, users can flexibly and dynamically use virtual ma chine resources, companies' efficiency of using and allocating resources is greatly improved, and information security is ensured. In most existing virtual cloud desk top solutions, computing and storage are bound together, and data is stored as im age files. This limits the flexibility and expandability of systems and is insufficient for meetinz customers' requirements in different scenarios.展开更多
A smart grid is the evolved form of the power grid with the integration of sensing,communication,computing,monitoring,and control technologies.These technologies make the power grid reliable,efficient,and economical.H...A smart grid is the evolved form of the power grid with the integration of sensing,communication,computing,monitoring,and control technologies.These technologies make the power grid reliable,efficient,and economical.However,the smartness boosts the volume of data in the smart grid.To obligate full benefits,big data has attractive techniques to process and analyze smart grid data.This paper presents and simulates a framework to make sure the use of big data computing technique in the smart grid.The offered framework comprises of the following four layers:(i)Data source layer,(ii)Data transmission layer,(iii)Data storage and computing layer,and(iv)Data analysis layer.As a proof of concept,the framework is simulated by taking the dataset of three cities of the Pakistan region and by considering two cloud-based data centers.The results are analyzed by taking into account the following parameters:(i)Heavy load data center,(ii)The impact of peak hour,(iii)High network delay,and(iv)The low network delay.The presented framework may help the power grid to achieve reliability,sustainability,and cost-efficiency for both the users and service providers.展开更多
Big Data applications are pervading more and more aspects of our life, encompassing commercial and scientific uses at increasing rates as we move towards exascale analytics. Examples of Big Data applications include s...Big Data applications are pervading more and more aspects of our life, encompassing commercial and scientific uses at increasing rates as we move towards exascale analytics. Examples of Big Data applications include storing and accessing user data in commercial clouds, mining of social data, and analysis of large-scale simulations and experiments such as the Large Hadron Collider. An increasing number of such data—intensive applications and services are relying on clouds in order to process and manage the enormous amounts of data required for continuous operation. It can be difficult to decide which of the many options for cloud processing is suitable for a given application;the aim of this paper is therefore to provide an interested user with an overview of the most important concepts of cloud computing as it relates to processing of Big Data.展开更多
The big data cloud computing is a new computing mode,which integrates the distributed processing,the parallel processing,the network computing,the virtualization technology,the load balancing and other network technol...The big data cloud computing is a new computing mode,which integrates the distributed processing,the parallel processing,the network computing,the virtualization technology,the load balancing and other network technologies.Under the operation of the big data cloud computing system,the computing resources can be distributed in a resource pool composed of a large number of the computers,allowing users to connect with the remote computer systems according to their own data information needs.展开更多
The cloud computing platform has the functions of efficiently allocating the dynamic resources, generating the dynamic computing and storage according to the user requests, and providing the good platform for the big ...The cloud computing platform has the functions of efficiently allocating the dynamic resources, generating the dynamic computing and storage according to the user requests, and providing the good platform for the big data feature analysis and mining. The big data feature mining in the cloud computing environment is an effective method for the elficient application of the massive data in the information age. In the process of the big data mining, the method o f the big data feature mining based on the gradient sampling has the poor logicality. It only mines the big data features from a single-level perspective, which reduces the precision of the big data feature mining.展开更多
Operating System(OS)is a critical piece of software that manages a computer’s hardware and resources,acting as the intermediary between the computer and the user.The existing OS is not designed for Big Data and Cloud...Operating System(OS)is a critical piece of software that manages a computer’s hardware and resources,acting as the intermediary between the computer and the user.The existing OS is not designed for Big Data and Cloud Computing,resulting in data processing and management inefficiency.This paper proposes a simplified and improved kernel on an x86 system designed for Big Data and Cloud Computing purposes.The proposed algorithm utilizes the performance benefits from the improved Input/Output(I/O)performance.The performance engineering runs the data-oriented design on traditional data management to improve data processing speed by reducing memory access overheads in conventional data management.The OS incorporates a data-oriented design to“modernize”various Data Science and management aspects.The resulting OS contains a basic input/output system(BIOS)bootloader that boots into Intel 32-bit protected mode,a text display terminal,4 GB paging memory,4096 heap block size,a Hard Disk Drive(HDD)I/O Advanced Technology Attachment(ATA)driver and more.There are also I/O scheduling algorithm prototypes that demonstrate how a simple Sweeping algorithm is superior to more conventionally known I/O scheduling algorithms.A MapReduce prototype is implemented using Message Passing Interface(MPI)for big data purposes.An attempt was made to optimize binary search using modern performance engineering and data-oriented design.展开更多
In this paper, we conduct research on the library development prospects and challenges under the environment of big data and cloud computing. Increasingly nervous and public libraries are facing funding, resources con...In this paper, we conduct research on the library development prospects and challenges under the environment of big data and cloud computing. Increasingly nervous and public libraries are facing funding, resources construction pace slow or stagnant difficult situation, readers to the library cause in the new times challenge. Big data era has quietly come, for the knowledge storage, use and development as own duty, the library, how to improve the ability of handling large amounts of growth literature is urgent. Our methodology solves the issues well which will be meaningful.展开更多
In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical D...In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical Database. Our investigation entails a comprehensive exploration of various methodologies aimed at enhancing the efficiency of ETL processes, with a primary emphasis on optimizing time and resource utilization. Through meticulous experimentation utilizing a representative dataset, we shed light on the advantages associated with the incorporation of PySpark and Docker containerized applications. Our research illuminates significant advancements in time efficiency, process streamlining, and resource optimization attained through the utilization of PySpark for distributed computing within Big Data Engineering workflows. Additionally, we underscore the strategic integration of Docker containers, delineating their pivotal role in augmenting scalability and reproducibility within the ETL pipeline. This paper encapsulates the pivotal insights gleaned from our experimental journey, accentuating the practical implications and benefits entailed in the adoption of PySpark and Docker. By streamlining Big Data Engineering and ETL processes in the context of clinical big data, our study contributes to the ongoing discourse on optimizing data processing efficiency in healthcare applications. The source code is available on request.展开更多
The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in...The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.展开更多
This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine ...This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed.展开更多
The fast technology development of 5G mobile broadband (5G), Internet of Things (IoT), Big Data Analytics (Big Data), Cloud Computing (Cloud) and Software Defined Networks (SDN) has made those technologies one after a...The fast technology development of 5G mobile broadband (5G), Internet of Things (IoT), Big Data Analytics (Big Data), Cloud Computing (Cloud) and Software Defined Networks (SDN) has made those technologies one after another and created strong interdependence among one another. For example, IoT applications that generate small data with large volume and fast velocity will need 5G with characteristics of high data rate and low latency to transmit such data faster and cheaper. On the other hand, those data also need Cloud to process and to store and furthermore, SDN to provide scalable network infrastructure to transport this large volume of data in an optimal way. This article explores the technical relationships among the development of IoT, Big Data, Cloud, and SDN in the coming 5G era and illustrates several ongoing programs and applications at National Chiao Tung University that are based on the converging of those technologies.展开更多
In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a ...In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a contradiction between the open nature of the cloud and the demand that data own-ers maintain their privacy.To use cloud resources for privacy-preserving data training,a viable method must be found.A privacy-preserving deep learning model(PPDLM)is suggested in this research to ad-dress this preserving issue.To preserve data privacy,we first encrypted the data using homomorphic en-cryption(HE)approach.Moreover,the deep learn-ing algorithm’s activation function—the sigmoid func-tion—uses the least-squares method to process non-addition and non-multiplication operations that are not allowed by homomorphic.Finally,experimental re-sults show that PPDLM has a significant effect on the protection of data privacy information.Compared with Non-Privacy Preserving Deep Learning Model(NPPDLM),PPDLM has higher computational effi-ciency.展开更多
Cloud computing offers numerous web-based services.The adoption of many Cloud applications has been hindered by concerns about data security and privacy.Cloud service providers’access to private information raises mo...Cloud computing offers numerous web-based services.The adoption of many Cloud applications has been hindered by concerns about data security and privacy.Cloud service providers’access to private information raises more security issues.In addition,Cloud computing is incompatible with several industries,including finance and government.Public-key cryptography is frequently cited as a significant advancement in cryptography.In contrast,the Digital Envelope that will be used combines symmetric and asymmetric methods to secure sensitive data.This study aims to design a Digital Envelope for distributed Cloud-based large data security using public-key cryptography.Through strategic design,the hybrid Envelope model adequately supports enterprises delivering routine customer services via independent multi-sourced entities.Both the Cloud service provider and the consumer benefit from the proposed scheme since it results in more resilient and secure services.The suggested approach employs a secret version of the distributed equation to ensure the highest level of security and confidentiality for large amounts of data.Based on the proposed scheme,a Digital Envelope application is developed which prohibits Cloud service providers from directly accessing insufficient or encrypted data.展开更多
With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dyn...With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtuMized resources are provided as services. With virtualization technology, cloud computing offers diverse services (such as virtual computing, virtual storage, virtual bandwidth, etc.) for the public by means of multi-tenancy mode. Although users are enjoying the capabilities of super-computing and mass storage supplied by cloud computing, cloud security still remains as a hot spot problem, which is in essence the trust management between data owners and storage service providers. In this paper, we propose a data coloring method based on cloud watermarking to recognize and ensure mutual reputations. The experimental results show that the robustness of reverse cloud generator can guarantee users' embedded social reputation identifications. Hence, our work provides a reference solution to the critical problem of cloud security.展开更多
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou...Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels.展开更多
To achieve the Sustainable Development Goals(SDGs),high-quality data are needed to inform the formulation of policies and investment decisions,to monitor progress towards the SDGs and to evaluate the impacts of polici...To achieve the Sustainable Development Goals(SDGs),high-quality data are needed to inform the formulation of policies and investment decisions,to monitor progress towards the SDGs and to evaluate the impacts of policies.However,the data landscape is changing.With emerging big data and cloud-based services,there are new opportunities for data collection,influencing both official data collection processes and the operation of the programmes they monitor.This paper uses cases and examples to explore the potential of crowdsourcing and public earth observation(EO)data products for monitoring and tracking the SDGs.This paper suggests that cloud-based services that integrate crowdsourcing and public EO data products provide cost-effective solutions for monitoring and tracking the SDGs,particularly for low-income countries.The paper also discusses the challenges of using cloud services and big data for SDG monitoring.Validation and quality control of public EO data is very important;otherwise,the user will be unable to assess the quality of the data or use it with confidence.展开更多
Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industr...Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industry adoption and migration of traditional computing services to the cloud,one of the main challenges in cybersecurity is to provide mechanisms to secure these technologies.This work proposes a Data Security Framework for cloud computing services(CCS)that evaluates and improves CCS data security from a software engineering perspective by evaluating the levels of security within the cloud computing paradigm using engineering methods and techniques applied to CCS.This framework is developed by means of a methodology based on a heuristic theory that incorporates knowledge generated by existing works as well as the experience of their implementation.The paper presents the design details of the framework,which consists of three stages:identification of data security requirements,management of data security risks and evaluation of data security performance in CCS.展开更多
Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing o...Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency.展开更多
With the recent advancements in computer technologies,the amount of data available is increasing day by day.However,excessive amounts of data create great challenges for users.Meanwhile,cloud computing services provid...With the recent advancements in computer technologies,the amount of data available is increasing day by day.However,excessive amounts of data create great challenges for users.Meanwhile,cloud computing services provide a powerful environment to store large volumes of data.They eliminate various requirements,such as dedicated space and maintenance of expensive computer hardware and software.Handling big data is a time-consuming task that requires large computational clusters to ensure successful data storage and processing.In this work,the definition,classification,and characteristics of big data are discussed,along with various cloud services,such as Microsoft Azure,Google Cloud,Amazon Web Services,International Business Machine cloud,Hortonworks,and MapR.A comparative analysis of various cloud-based big data frameworks is also performed.Various research challenges are defined in terms of distributed database storage,data security,heterogeneity,and data visualization.展开更多
文摘The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models.
文摘Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved computing and storage. Management has become easier, andOAM costs have been significantly reduced. Cloud desktop technology is develop ing rapidly. With this technology, users can flexibly and dynamically use virtual ma chine resources, companies' efficiency of using and allocating resources is greatly improved, and information security is ensured. In most existing virtual cloud desk top solutions, computing and storage are bound together, and data is stored as im age files. This limits the flexibility and expandability of systems and is insufficient for meetinz customers' requirements in different scenarios.
基金This work was supported by the National Natural Science Foundation of China(61871058).
文摘A smart grid is the evolved form of the power grid with the integration of sensing,communication,computing,monitoring,and control technologies.These technologies make the power grid reliable,efficient,and economical.However,the smartness boosts the volume of data in the smart grid.To obligate full benefits,big data has attractive techniques to process and analyze smart grid data.This paper presents and simulates a framework to make sure the use of big data computing technique in the smart grid.The offered framework comprises of the following four layers:(i)Data source layer,(ii)Data transmission layer,(iii)Data storage and computing layer,and(iv)Data analysis layer.As a proof of concept,the framework is simulated by taking the dataset of three cities of the Pakistan region and by considering two cloud-based data centers.The results are analyzed by taking into account the following parameters:(i)Heavy load data center,(ii)The impact of peak hour,(iii)High network delay,and(iv)The low network delay.The presented framework may help the power grid to achieve reliability,sustainability,and cost-efficiency for both the users and service providers.
文摘Big Data applications are pervading more and more aspects of our life, encompassing commercial and scientific uses at increasing rates as we move towards exascale analytics. Examples of Big Data applications include storing and accessing user data in commercial clouds, mining of social data, and analysis of large-scale simulations and experiments such as the Large Hadron Collider. An increasing number of such data—intensive applications and services are relying on clouds in order to process and manage the enormous amounts of data required for continuous operation. It can be difficult to decide which of the many options for cloud processing is suitable for a given application;the aim of this paper is therefore to provide an interested user with an overview of the most important concepts of cloud computing as it relates to processing of Big Data.
文摘The big data cloud computing is a new computing mode,which integrates the distributed processing,the parallel processing,the network computing,the virtualization technology,the load balancing and other network technologies.Under the operation of the big data cloud computing system,the computing resources can be distributed in a resource pool composed of a large number of the computers,allowing users to connect with the remote computer systems according to their own data information needs.
文摘The cloud computing platform has the functions of efficiently allocating the dynamic resources, generating the dynamic computing and storage according to the user requests, and providing the good platform for the big data feature analysis and mining. The big data feature mining in the cloud computing environment is an effective method for the elficient application of the massive data in the information age. In the process of the big data mining, the method o f the big data feature mining based on the gradient sampling has the poor logicality. It only mines the big data features from a single-level perspective, which reduces the precision of the big data feature mining.
文摘Operating System(OS)is a critical piece of software that manages a computer’s hardware and resources,acting as the intermediary between the computer and the user.The existing OS is not designed for Big Data and Cloud Computing,resulting in data processing and management inefficiency.This paper proposes a simplified and improved kernel on an x86 system designed for Big Data and Cloud Computing purposes.The proposed algorithm utilizes the performance benefits from the improved Input/Output(I/O)performance.The performance engineering runs the data-oriented design on traditional data management to improve data processing speed by reducing memory access overheads in conventional data management.The OS incorporates a data-oriented design to“modernize”various Data Science and management aspects.The resulting OS contains a basic input/output system(BIOS)bootloader that boots into Intel 32-bit protected mode,a text display terminal,4 GB paging memory,4096 heap block size,a Hard Disk Drive(HDD)I/O Advanced Technology Attachment(ATA)driver and more.There are also I/O scheduling algorithm prototypes that demonstrate how a simple Sweeping algorithm is superior to more conventionally known I/O scheduling algorithms.A MapReduce prototype is implemented using Message Passing Interface(MPI)for big data purposes.An attempt was made to optimize binary search using modern performance engineering and data-oriented design.
文摘In this paper, we conduct research on the library development prospects and challenges under the environment of big data and cloud computing. Increasingly nervous and public libraries are facing funding, resources construction pace slow or stagnant difficult situation, readers to the library cause in the new times challenge. Big data era has quietly come, for the knowledge storage, use and development as own duty, the library, how to improve the ability of handling large amounts of growth literature is urgent. Our methodology solves the issues well which will be meaningful.
文摘In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical Database. Our investigation entails a comprehensive exploration of various methodologies aimed at enhancing the efficiency of ETL processes, with a primary emphasis on optimizing time and resource utilization. Through meticulous experimentation utilizing a representative dataset, we shed light on the advantages associated with the incorporation of PySpark and Docker containerized applications. Our research illuminates significant advancements in time efficiency, process streamlining, and resource optimization attained through the utilization of PySpark for distributed computing within Big Data Engineering workflows. Additionally, we underscore the strategic integration of Docker containers, delineating their pivotal role in augmenting scalability and reproducibility within the ETL pipeline. This paper encapsulates the pivotal insights gleaned from our experimental journey, accentuating the practical implications and benefits entailed in the adoption of PySpark and Docker. By streamlining Big Data Engineering and ETL processes in the context of clinical big data, our study contributes to the ongoing discourse on optimizing data processing efficiency in healthcare applications. The source code is available on request.
基金supported in part by the National Nature Science Foundation of China under Grant No.61402413 and 61340058 the "Six Kinds Peak Talents Plan" project of Jiangsu Province under Grant No.ll-JY-009+2 种基金the Nature Science Foundation of Zhejiang Province under Grant No.LY14F020019, Z14F020006 and Y1101183the China Postdoctoral Science Foundation funded project under Grant No.2012M511732Jiangsu Province Postdoctoral Science Foundation funded project Grant No.1102014C
文摘The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.
文摘This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed.
文摘The fast technology development of 5G mobile broadband (5G), Internet of Things (IoT), Big Data Analytics (Big Data), Cloud Computing (Cloud) and Software Defined Networks (SDN) has made those technologies one after another and created strong interdependence among one another. For example, IoT applications that generate small data with large volume and fast velocity will need 5G with characteristics of high data rate and low latency to transmit such data faster and cheaper. On the other hand, those data also need Cloud to process and to store and furthermore, SDN to provide scalable network infrastructure to transport this large volume of data in an optimal way. This article explores the technical relationships among the development of IoT, Big Data, Cloud, and SDN in the coming 5G era and illustrates several ongoing programs and applications at National Chiao Tung University that are based on the converging of those technologies.
基金This work was partially supported by the Natural Science Foundation of Beijing Municipality(No.4222038)by Open Research Project of the State Key Laboratory of Media Convergence and Communication(Communication University of China),the National Key R&D Program of China(No.2021YFF0307600)Fundamental Research Funds for the Central Universities.
文摘In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a contradiction between the open nature of the cloud and the demand that data own-ers maintain their privacy.To use cloud resources for privacy-preserving data training,a viable method must be found.A privacy-preserving deep learning model(PPDLM)is suggested in this research to ad-dress this preserving issue.To preserve data privacy,we first encrypted the data using homomorphic en-cryption(HE)approach.Moreover,the deep learn-ing algorithm’s activation function—the sigmoid func-tion—uses the least-squares method to process non-addition and non-multiplication operations that are not allowed by homomorphic.Finally,experimental re-sults show that PPDLM has a significant effect on the protection of data privacy information.Compared with Non-Privacy Preserving Deep Learning Model(NPPDLM),PPDLM has higher computational effi-ciency.
文摘Cloud computing offers numerous web-based services.The adoption of many Cloud applications has been hindered by concerns about data security and privacy.Cloud service providers’access to private information raises more security issues.In addition,Cloud computing is incompatible with several industries,including finance and government.Public-key cryptography is frequently cited as a significant advancement in cryptography.In contrast,the Digital Envelope that will be used combines symmetric and asymmetric methods to secure sensitive data.This study aims to design a Digital Envelope for distributed Cloud-based large data security using public-key cryptography.Through strategic design,the hybrid Envelope model adequately supports enterprises delivering routine customer services via independent multi-sourced entities.Both the Cloud service provider and the consumer benefit from the proposed scheme since it results in more resilient and secure services.The suggested approach employs a secret version of the distributed equation to ensure the highest level of security and confidentiality for large amounts of data.Based on the proposed scheme,a Digital Envelope application is developed which prohibits Cloud service providers from directly accessing insufficient or encrypted data.
基金supported by National Basic Research Program of China (973 Program) (No. 2007CB310800)China Postdoctoral Science Foundation (No. 20090460107 and No. 201003794)
文摘With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtuMized resources are provided as services. With virtualization technology, cloud computing offers diverse services (such as virtual computing, virtual storage, virtual bandwidth, etc.) for the public by means of multi-tenancy mode. Although users are enjoying the capabilities of super-computing and mass storage supplied by cloud computing, cloud security still remains as a hot spot problem, which is in essence the trust management between data owners and storage service providers. In this paper, we propose a data coloring method based on cloud watermarking to recognize and ensure mutual reputations. The experimental results show that the robustness of reverse cloud generator can guarantee users' embedded social reputation identifications. Hence, our work provides a reference solution to the critical problem of cloud security.
基金This work was supported by the National Natural Science Foundation of China(No.61702276)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant 2016r055 and the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The authors are grateful for the anonymous reviewers who made constructive comments and improvements.
文摘Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels.
基金funded by the National Key Research and Development Program of China(Grant No.2016YFA0600304)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA19030201).
文摘To achieve the Sustainable Development Goals(SDGs),high-quality data are needed to inform the formulation of policies and investment decisions,to monitor progress towards the SDGs and to evaluate the impacts of policies.However,the data landscape is changing.With emerging big data and cloud-based services,there are new opportunities for data collection,influencing both official data collection processes and the operation of the programmes they monitor.This paper uses cases and examples to explore the potential of crowdsourcing and public earth observation(EO)data products for monitoring and tracking the SDGs.This paper suggests that cloud-based services that integrate crowdsourcing and public EO data products provide cost-effective solutions for monitoring and tracking the SDGs,particularly for low-income countries.The paper also discusses the challenges of using cloud services and big data for SDG monitoring.Validation and quality control of public EO data is very important;otherwise,the user will be unable to assess the quality of the data or use it with confidence.
文摘Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industry adoption and migration of traditional computing services to the cloud,one of the main challenges in cybersecurity is to provide mechanisms to secure these technologies.This work proposes a Data Security Framework for cloud computing services(CCS)that evaluates and improves CCS data security from a software engineering perspective by evaluating the levels of security within the cloud computing paradigm using engineering methods and techniques applied to CCS.This framework is developed by means of a methodology based on a heuristic theory that incorporates knowledge generated by existing works as well as the experience of their implementation.The paper presents the design details of the framework,which consists of three stages:identification of data security requirements,management of data security risks and evaluation of data security performance in CCS.
文摘Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency.
文摘With the recent advancements in computer technologies,the amount of data available is increasing day by day.However,excessive amounts of data create great challenges for users.Meanwhile,cloud computing services provide a powerful environment to store large volumes of data.They eliminate various requirements,such as dedicated space and maintenance of expensive computer hardware and software.Handling big data is a time-consuming task that requires large computational clusters to ensure successful data storage and processing.In this work,the definition,classification,and characteristics of big data are discussed,along with various cloud services,such as Microsoft Azure,Google Cloud,Amazon Web Services,International Business Machine cloud,Hortonworks,and MapR.A comparative analysis of various cloud-based big data frameworks is also performed.Various research challenges are defined in terms of distributed database storage,data security,heterogeneity,and data visualization.