Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process ...Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning.展开更多
随着语义万维网(sematic Web)和关联数据集项目(linked data project)的不断发展,各领域的语义数据正在大规模扩增.同时,这些大规模语义数据之间存在着复杂的语义关联性,这些关联信息的挖掘对于研究者来说有着重要的意义.为解决传统推...随着语义万维网(sematic Web)和关联数据集项目(linked data project)的不断发展,各领域的语义数据正在大规模扩增.同时,这些大规模语义数据之间存在着复杂的语义关联性,这些关联信息的挖掘对于研究者来说有着重要的意义.为解决传统推理引擎在进行大规模语义数据推理时存在的计算性能和可扩展性不足等问题,提出了一种基于Hadoop的语义大数据分布式推理框架,并且设计了相应的基于属性链(property chain)的原型推理系统来高效地发现海量语义数据中潜在的有价值的信息.实验主要关注于医疗和生命科学领域各本体之间的语义关联发现,实验结果表明,该推理系统取得了良好的性能———扩展性以及准确性.展开更多
文摘Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning.
文摘随着语义万维网(sematic Web)和关联数据集项目(linked data project)的不断发展,各领域的语义数据正在大规模扩增.同时,这些大规模语义数据之间存在着复杂的语义关联性,这些关联信息的挖掘对于研究者来说有着重要的意义.为解决传统推理引擎在进行大规模语义数据推理时存在的计算性能和可扩展性不足等问题,提出了一种基于Hadoop的语义大数据分布式推理框架,并且设计了相应的基于属性链(property chain)的原型推理系统来高效地发现海量语义数据中潜在的有价值的信息.实验主要关注于医疗和生命科学领域各本体之间的语义关联发现,实验结果表明,该推理系统取得了良好的性能———扩展性以及准确性.