A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulat...A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies.展开更多
In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequal...In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.展开更多
The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role o...The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.展开更多
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouvill...This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.展开更多
Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the add...Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.展开更多
A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuou...A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuous polynomials on polytopal meshes.But its formulation is simple,symmetric,positive definite,and parameter independent,without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method.Optimal order error estimates in a discrete H2 norm are established for the corresponding finite element solutions.Error estimates in the L^(2)norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements.The numerical results are presented to confirm the theory of convergence.展开更多
In this article, we present and analyze a stabilizer-free C^(0)weak Galerkin(SF-C^(0)WG) method for solving the biharmonic problem. The SF-C^(0)WG method is formulated in terms of cell unknowns which are C^(0)continuo...In this article, we present and analyze a stabilizer-free C^(0)weak Galerkin(SF-C^(0)WG) method for solving the biharmonic problem. The SF-C^(0)WG method is formulated in terms of cell unknowns which are C^(0)continuous piecewise polynomials of degree k + 2 with k≥0 and in terms of face unknowns which are discontinuous piecewise polynomials of degree k + 1. The formulation of this SF-C^(0)WG method is without the stabilized or penalty term and is as simple as the C1conforming finite element scheme of the biharmonic problem. Optimal order error estimates in a discrete H^(2)-like norm and the H^(1)norm for k≥0 are established for the corresponding WG finite element solutions. Error estimates in the L^(2)norm are also derived with an optimal order of convergence for k > 0 and sub-optimal order of convergence for k = 0. Numerical experiments are shown to confirm the theoretical results.展开更多
In this paper,we consider a biharmonic equation with respect to the Dirichlet problem on a domain of a locally finite graph.Using the variation method,we prove that the equation has two distinct solutions under certai...In this paper,we consider a biharmonic equation with respect to the Dirichlet problem on a domain of a locally finite graph.Using the variation method,we prove that the equation has two distinct solutions under certain conditions.展开更多
An improved Hardy inequality will be proven in the present work. Using the improved Hardy inequality and variational techniques, we also discuss the existence of nontrivial solution for following the weighted eigenval...An improved Hardy inequality will be proven in the present work. Using the improved Hardy inequality and variational techniques, we also discuss the existence of nontrivial solution for following the weighted eigenvalue problem:展开更多
This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The opt...This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular grids.展开更多
The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matchi...The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H^1-norm estimates are obtained under a reasonable elliptic regularity assumption.展开更多
In this paper, we consider the solution of the biharmonic equation using Adini nonconforming finite element, and report new results of the asymptotic error expansions of the interpolation error functionals and nonconf...In this paper, we consider the solution of the biharmonic equation using Adini nonconforming finite element, and report new results of the asymptotic error expansions of the interpolation error functionals and nonconforming remainder. These expansions are used to develop two extrapolation formulas and a series of sharp error estimates. Finally, the numerical results have verified the extrapolation theory.展开更多
The solution of boundary value problems(BVP)for fourth order differential equations by their reduction to BVP for second order equations,with the aim to use the available efficient algorithms for the latter ones,attra...The solution of boundary value problems(BVP)for fourth order differential equations by their reduction to BVP for second order equations,with the aim to use the available efficient algorithms for the latter ones,attracts attention from many researchers.In this paper,using the technique developed by the authors in recent works we construct iterative method for a problem with complicated mixed boundary conditions for biharmonic equation which is originated from nanofluidic physics.The convergence rate of the method is proved and some numerical experiments are performed for testing its dependence on a parameter appearing in boundary conditions and on the position of the point where a transmission of boundary conditions occurs.展开更多
This paper presents a nonconforming finite element scheme for the planar biharmonic equation,which applies piecewise cubic polynomials(P_(3))and possesses O(h^(2))convergence rate for smooth solutions in the energy no...This paper presents a nonconforming finite element scheme for the planar biharmonic equation,which applies piecewise cubic polynomials(P_(3))and possesses O(h^(2))convergence rate for smooth solutions in the energy norm on general shape-regular triangulations.Both Dirichlet and Navier type boundary value problems are studied.The basis for the scheme is a piecewise cubic polynomial space,which can approximate the H^(4) functions with O(h^(2))accuracy in the broken H^(2) norm.Besides,a discrete strengthened Miranda-Talenti estimate(▽^(2)_(h)·,▽^(2)_(h)·)=(Δh·,Δh·),which is usually not true for nonconforming finite element spaces,is proved.The finite element space does not correspond to a finite element defined with Ciarlet’s triple;however,it admits a set of locally supported basis functions and can thus be implemented by the usual routine.The notion of the finite element Stokes complex plays an important role in the analysis as well as the construction of the basis functions.展开更多
In this paper, local a priori, local a posteriori and global a posteriori error estimates are obtained for TQC9 element for the biharmonic equation. An adaptive algorithm is given based on the a posteriori error estim...In this paper, local a priori, local a posteriori and global a posteriori error estimates are obtained for TQC9 element for the biharmonic equation. An adaptive algorithm is given based on the a posteriori error estimates.展开更多
We design and numerically validate a recovery based linear finite element method for solving the biharmonic equation.The main idea is to replace the gradient operator▽on linear finite element space by G(▽)in the wea...We design and numerically validate a recovery based linear finite element method for solving the biharmonic equation.The main idea is to replace the gradient operator▽on linear finite element space by G(▽)in the weak formulation of the biharmonic equation,where G is the recovery operator which recovers the piecewise constant function into the linear finite element space.By operator G,Laplace operator△is replaced by▽·G(▽).Furthermore,the boundary condition on normal derivative▽u-n is treated by the boundary penalty method.The explicit matrix expression of the proposed method is also introduced.Numerical examples on the uniform and adaptive meshes are presented to illustrate the correctness and effectiveness of the proposed method.展开更多
This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions.The symmetric stress σ=−∇^(2)u is sought in the Sobolev space H(divd...This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions.The symmetric stress σ=−∇^(2)u is sought in the Sobolev space H(divdiv,Ω;S)simultaneously with the displacement u in L^(2)(Ω).By stemming from the structure of H(div,Ω;S)conforming elements for the linear elasticity problems proposed by Hu and Zhang(2014),the H(divdiv,Ω;S)conforming finite element spaces are constructed by imposing the normal continuity of divσ on the H(div,Ω;S)conforming spaces of P_(k) symmetric tensors.The inheritance makes the basis functions easy to compute.The discrete spaces for u are composed of the piecewise P_(k−2) polynomials without requiring any continuity.Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for k≥3,and the optimal order of convergence is achieved.Besides,the superconvergence and the postprocessing results are displayed.Some numerical experiments are provided to demonstrate the theoretical analysis.展开更多
Provides information on a study which discussed the convergence and superconvergence for eigenvalue problem of the biharmonic equation using the Hermite bicubic element. Discussion on eigenvalue problem for biharmonic...Provides information on a study which discussed the convergence and superconvergence for eigenvalue problem of the biharmonic equation using the Hermite bicubic element. Discussion on eigenvalue problem for biharmonic equation; Background on asymptotic error expansions and interpolation postprocessing; Superconvergence approximations to the eigenvalue and eigenfunction.展开更多
In this paper,a new mixedfinite element scheme using element-wise stabilization is introduced for the biharmonic equation with variable coefficient on Lipschitz polyhedral domains.The proposed scheme doesn’t involve ...In this paper,a new mixedfinite element scheme using element-wise stabilization is introduced for the biharmonic equation with variable coefficient on Lipschitz polyhedral domains.The proposed scheme doesn’t involve any integration along mesh interfaces.The gradient of the solution is approximated by H(div)-conforming BDMk+1 element or vector valued Lagrange element with order k+1,while the solution is approximated by Lagrange element with order k+2 for any k≥0.This scheme can be easily implemented and produces symmetric and positive definite linear system.We provide a new discrete H^(2)-norm stability,which is useful not only in analysis of this scheme but also in C^(0) interior penalty methods and DG methods.Optimal convergences in both discrete H^(2)-norm and L^(2)-norm are derived.This scheme with its analysis is further generalized to the von K´arm´an equations.Finally,numerical results verifying the theoretical estimates of the proposed algorithms are also presented.展开更多
In this note, we investigate the existence of the minimal solution and the uniqueness of the weak extremal (probably singular) solution to the biharmonic equation △2ω=λg(ω)with Dirichlet boundary condition in ...In this note, we investigate the existence of the minimal solution and the uniqueness of the weak extremal (probably singular) solution to the biharmonic equation △2ω=λg(ω)with Dirichlet boundary condition in the unit ball in Rn, where the source term is logarithmically convex. An example is also given to illustrate that the logarithmical convexity is not a necessary condition to ensure the uniqueness of the extremal solution.展开更多
文摘A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies.
基金Supported by NSFC(10471047)NSF Guangdong Province(05300159).
文摘In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.
基金Supported by the National Natural Science Foundation of China (10631030)PHD specialized grant of Ministry of Education of China (20060511001) and supported in part by the Xiao-Xiang Special Fund, Hunan
文摘The purpose of this article is to establish the regularity of the weak solutions for the nonlinear biharmonic equation {△^2u + a(x)u = g(x, u)u∈ H^2(R^N), where the condition u∈ H^2(R^N) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.
基金partially supportedby Ministerio de Ciencia e Innovacion-SPAINFEDER,project MTM2010-15314supported by the Ministry of Science and Education of the Republic of Kazakhstan through the Project No.0713 GF
文摘This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.
基金supported by the National Natural Science Foundation of China (No. 10671154)the Na-tional Basic Research Program (No. 2005CB321703)the Science and Technology Foundation of Guizhou Province of China (No. [2008]2123)
文摘Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.
基金M.Cui was supported in part by the National Natural Science Foundation of China(Grant No.11571026)the Beijing Municipal Natural Science Foundation of China(Grant No.1192003)Xiu Ye was supported in part by the National Science Foundation Grant DMS-1620016.
文摘A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuous polynomials on polytopal meshes.But its formulation is simple,symmetric,positive definite,and parameter independent,without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method.Optimal order error estimates in a discrete H2 norm are established for the corresponding finite element solutions.Error estimates in the L^(2)norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements.The numerical results are presented to confirm the theory of convergence.
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19A010008)National Natural Science Foundation of China(Grant No.12071184)。
文摘In this article, we present and analyze a stabilizer-free C^(0)weak Galerkin(SF-C^(0)WG) method for solving the biharmonic problem. The SF-C^(0)WG method is formulated in terms of cell unknowns which are C^(0)continuous piecewise polynomials of degree k + 2 with k≥0 and in terms of face unknowns which are discontinuous piecewise polynomials of degree k + 1. The formulation of this SF-C^(0)WG method is without the stabilized or penalty term and is as simple as the C1conforming finite element scheme of the biharmonic problem. Optimal order error estimates in a discrete H^(2)-like norm and the H^(1)norm for k≥0 are established for the corresponding WG finite element solutions. Error estimates in the L^(2)norm are also derived with an optimal order of convergence for k > 0 and sub-optimal order of convergence for k = 0. Numerical experiments are shown to confirm the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant No.11721101)by National Key Research and Development Project SQ2020YFA070080.
文摘In this paper,we consider a biharmonic equation with respect to the Dirichlet problem on a domain of a locally finite graph.Using the variation method,we prove that the equation has two distinct solutions under certain conditions.
基金Supported by the National Natural Science Foundation of China (No.10171032)the Guangdong Natural Science Foundation (No.011606)
文摘An improved Hardy inequality will be proven in the present work. Using the improved Hardy inequality and variational techniques, we also discuss the existence of nontrivial solution for following the weighted eigenvalue problem:
基金Acknowledgments. The authors would like to thank Professor Jinchao Xu for his valuable suggestions and comments. The author C. Feng is partially supported by the NSFC Grants NO. 11571293 and 11201398, the Project of Scientific Research Fund of Hunan Provincial Education Department (14B044), Specialized research Fund for the Doctoral Program of Higher Education of China Grant 20124301110003 and Hunan Provincial Natural Science Foundation of China (14JJ2063) S. Zhang is partially supported by the NSFC Grants NO. 11101415 and 11471026, and the SRF for ROCS, SEM.
文摘This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular grids.
基金This work was subsidized by the special funds for major state basic research projects under 2005CB321700 and a grant from the National Science Foundation (NSF) of China (No. 10471144).
文摘The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H^1-norm estimates are obtained under a reasonable elliptic regularity assumption.
文摘In this paper, we consider the solution of the biharmonic equation using Adini nonconforming finite element, and report new results of the asymptotic error expansions of the interpolation error functionals and nonconforming remainder. These expansions are used to develop two extrapolation formulas and a series of sharp error estimates. Finally, the numerical results have verified the extrapolation theory.
基金support from Vietnam National Foundation for Science and Technology Development(NAFOSTED)would like to thank the referees for the helpful suggestions.
文摘The solution of boundary value problems(BVP)for fourth order differential equations by their reduction to BVP for second order equations,with the aim to use the available efficient algorithms for the latter ones,attracts attention from many researchers.In this paper,using the technique developed by the authors in recent works we construct iterative method for a problem with complicated mixed boundary conditions for biharmonic equation which is originated from nanofluidic physics.The convergence rate of the method is proved and some numerical experiments are performed for testing its dependence on a parameter appearing in boundary conditions and on the position of the point where a transmission of boundary conditions occurs.
基金supported by National Natural Science Foundation of China(Grant Nos.11871465 and 11471026)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB 41000000)。
文摘This paper presents a nonconforming finite element scheme for the planar biharmonic equation,which applies piecewise cubic polynomials(P_(3))and possesses O(h^(2))convergence rate for smooth solutions in the energy norm on general shape-regular triangulations.Both Dirichlet and Navier type boundary value problems are studied.The basis for the scheme is a piecewise cubic polynomial space,which can approximate the H^(4) functions with O(h^(2))accuracy in the broken H^(2) norm.Besides,a discrete strengthened Miranda-Talenti estimate(▽^(2)_(h)·,▽^(2)_(h)·)=(Δh·,Δh·),which is usually not true for nonconforming finite element spaces,is proved.The finite element space does not correspond to a finite element defined with Ciarlet’s triple;however,it admits a set of locally supported basis functions and can thus be implemented by the usual routine.The notion of the finite element Stokes complex plays an important role in the analysis as well as the construction of the basis functions.
基金supported by the National Natural Science Foundation of China (10571006) and RFDP of China
文摘In this paper, local a priori, local a posteriori and global a posteriori error estimates are obtained for TQC9 element for the biharmonic equation. An adaptive algorithm is given based on the a posteriori error estimates.
文摘We design and numerically validate a recovery based linear finite element method for solving the biharmonic equation.The main idea is to replace the gradient operator▽on linear finite element space by G(▽)in the weak formulation of the biharmonic equation,where G is the recovery operator which recovers the piecewise constant function into the linear finite element space.By operator G,Laplace operator△is replaced by▽·G(▽).Furthermore,the boundary condition on normal derivative▽u-n is treated by the boundary penalty method.The explicit matrix expression of the proposed method is also introduced.Numerical examples on the uniform and adaptive meshes are presented to illustrate the correctness and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(Grant Nos.11625101 and 11421101).
文摘This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions.The symmetric stress σ=−∇^(2)u is sought in the Sobolev space H(divdiv,Ω;S)simultaneously with the displacement u in L^(2)(Ω).By stemming from the structure of H(div,Ω;S)conforming elements for the linear elasticity problems proposed by Hu and Zhang(2014),the H(divdiv,Ω;S)conforming finite element spaces are constructed by imposing the normal continuity of divσ on the H(div,Ω;S)conforming spaces of P_(k) symmetric tensors.The inheritance makes the basis functions easy to compute.The discrete spaces for u are composed of the piecewise P_(k−2) polynomials without requiring any continuity.Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for k≥3,and the optimal order of convergence is achieved.Besides,the superconvergence and the postprocessing results are displayed.Some numerical experiments are provided to demonstrate the theoretical analysis.
文摘Provides information on a study which discussed the convergence and superconvergence for eigenvalue problem of the biharmonic equation using the Hermite bicubic element. Discussion on eigenvalue problem for biharmonic equation; Background on asymptotic error expansions and interpolation postprocessing; Superconvergence approximations to the eigenvalue and eigenfunction.
基金supported by the NSF of China(Grant No.12122115,11771363)supported by IITB Chair Professor’s fund and also partly by a MATRIX Grant No.MTR/201S/000309(SERB,DST,Govt.India)supported by a grant fromthe Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.CityU 11302219).
文摘In this paper,a new mixedfinite element scheme using element-wise stabilization is introduced for the biharmonic equation with variable coefficient on Lipschitz polyhedral domains.The proposed scheme doesn’t involve any integration along mesh interfaces.The gradient of the solution is approximated by H(div)-conforming BDMk+1 element or vector valued Lagrange element with order k+1,while the solution is approximated by Lagrange element with order k+2 for any k≥0.This scheme can be easily implemented and produces symmetric and positive definite linear system.We provide a new discrete H^(2)-norm stability,which is useful not only in analysis of this scheme but also in C^(0) interior penalty methods and DG methods.Optimal convergences in both discrete H^(2)-norm and L^(2)-norm are derived.This scheme with its analysis is further generalized to the von K´arm´an equations.Finally,numerical results verifying the theoretical estimates of the proposed algorithms are also presented.
文摘In this note, we investigate the existence of the minimal solution and the uniqueness of the weak extremal (probably singular) solution to the biharmonic equation △2ω=λg(ω)with Dirichlet boundary condition in the unit ball in Rn, where the source term is logarithmically convex. An example is also given to illustrate that the logarithmical convexity is not a necessary condition to ensure the uniqueness of the extremal solution.