This paper investigates the dynamic design methodology of mountain bikes with rear suspension. Firstly, a multi-rigid body dynamic model of rider and mountain bike coupled system is constructed. The rider model includ...This paper investigates the dynamic design methodology of mountain bikes with rear suspension. Firstly, a multi-rigid body dynamic model of rider and mountain bike coupled system is constructed. The rider model includes 19 skeletons, 18 joints and 118 main muscles. Secondly, to validate the feasibility of the model, an experiment test is designed to reflect the real cycling status. Finally, aiming at enhancing the performance of the rider vibration comfort, the scale parameters of rear suspension are optimized with computer simulation and uniform design. The mathematical model in the vibration performance and the design variables is constructed with regression analysis. The result shows that when the length of side link is 90 mm, the length of connected rod is 336.115 1 mm and the included angle between absorber and side link is 60°, the mountain bike has better vibration comfort. This study and relevant conclusions are of practical importance to the design of the mountain bike's rear suspension system.展开更多
This article aims to discuss the design process of the CAD system dedicated for sport bike frame structure, introducing in detail its design concept and the scheme of implementation. Based on the different usages of s...This article aims to discuss the design process of the CAD system dedicated for sport bike frame structure, introducing in detail its design concept and the scheme of implementation. Based on the different usages of sport bikes and the requirements on the system made out by Beijing Hanglun Sport Apparatus Company Limited. Structural analysis on two types of bikes frames is carried out. The system defines the basic design parameters and analyses the constraint conditions.Then calculating formulas with constraint conditions are derived. The system solves equations with Visual C++ program, realizes input of the original data and output of the results through interactive system. With AutoCAD14.0 as the platform, the system uses VC++ and ObjectARX to realize auto output of bike frame graphics. The system has been put into use. Practice has affirmed that the system抯 convenience, applicability and reliability all have reached the expected goal.展开更多
基金supported by Tianjin Municipal Science and Technology Development Project of China (Grant No. 043186211)Tianjin Municipal Key Laboratory of Advanced Manufacturing Technology and Equipment of Tianjin University of China
文摘This paper investigates the dynamic design methodology of mountain bikes with rear suspension. Firstly, a multi-rigid body dynamic model of rider and mountain bike coupled system is constructed. The rider model includes 19 skeletons, 18 joints and 118 main muscles. Secondly, to validate the feasibility of the model, an experiment test is designed to reflect the real cycling status. Finally, aiming at enhancing the performance of the rider vibration comfort, the scale parameters of rear suspension are optimized with computer simulation and uniform design. The mathematical model in the vibration performance and the design variables is constructed with regression analysis. The result shows that when the length of side link is 90 mm, the length of connected rod is 336.115 1 mm and the included angle between absorber and side link is 60°, the mountain bike has better vibration comfort. This study and relevant conclusions are of practical importance to the design of the mountain bike's rear suspension system.
文摘This article aims to discuss the design process of the CAD system dedicated for sport bike frame structure, introducing in detail its design concept and the scheme of implementation. Based on the different usages of sport bikes and the requirements on the system made out by Beijing Hanglun Sport Apparatus Company Limited. Structural analysis on two types of bikes frames is carried out. The system defines the basic design parameters and analyses the constraint conditions.Then calculating formulas with constraint conditions are derived. The system solves equations with Visual C++ program, realizes input of the original data and output of the results through interactive system. With AutoCAD14.0 as the platform, the system uses VC++ and ObjectARX to realize auto output of bike frame graphics. The system has been put into use. Practice has affirmed that the system抯 convenience, applicability and reliability all have reached the expected goal.