期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Hybrid Regularization-Based Multi-Frame Super-Resolution Using Bayesian Framework 被引量:1
1
作者 Mahmoud M.Khattab Akram M.Zeki +3 位作者 Ali A.Alwan Belgacem Bouallegue Safaa S.Matter Abdelmoty M.Ahmed 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期35-54,共20页
The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images... The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images,which is useful in numerousfields.Nevertheless,super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts,which include blurring distortion,noises,and stair-casing effects.Consequently,it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image.In this research work,we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception,which improves human analysis and interpretation processes.Accordingly,we propose a new approach to the image reconstruction of multi-frame super-resolution,so that it is created through the use of the regularization framework.In the proposed approach,the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image,including sharp image edges and texture details while preventing artifacts.The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches. 展开更多
关键词 SUPER-RESOLUTION regularized framework bilateral total variation bilateral edge preserving
下载PDF
A novel denoising method for infrared image based on bilateral filtering and non-local means 被引量:6
2
作者 刘凤连 孙梦尧 蔡文娜 《Optoelectronics Letters》 EI 2017年第3期237-240,共4页
This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effect... This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effectively preserve the edge and detail of the image. And compared with classical methods, bilateral filtering method has a better performance in denosing for the reason that the weight includes the geometric closeness factor and the intensity similarity factor. We combine the geometric closeness factor with the weight of non-local means, and construct a new weight. Experimental results show that the modified algorithm can achieve better performance. And it can protect the image detail and structure information better. 展开更多
关键词 bilateral filtering similarity pixel texture combine repetition neighborhood preserve noisy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部