Objective: To evaluate the anti-tumor effects of SeO2 and its mechanisms on three human lung cancer cell lines. Methods: Three lung cancer cells A549, GLC-82 and PG were treated with 3-30 μmol/L SeO2. Flow cytometry ...Objective: To evaluate the anti-tumor effects of SeO2 and its mechanisms on three human lung cancer cell lines. Methods: Three lung cancer cells A549, GLC-82 and PG were treated with 3-30 μmol/L SeO2. Flow cytometry was used to detect apoptosis, and analyze the changes of expression of p53 and Bcl-2, as well as ROS and Ca2+ level within cells. Results:SeO2 markedly inhibited cell proliferation and viability, and prompted apoptosis after 48 h treatment. SeO2 at 10 μmol/L induced 47.8% apoptosis in A549 cells, 40.8% in GLC-82 cells, 18.2% in PG cells. SeO2 at 30 μmol/L induced 37.8% apoposis in PG cells,but did not increase apoptotic raes in other two cells. SeO2 could down-regulate the mean fluorescent intensity of Bcl-2 from 65.8 to 9.6 in A549, but not in GLC-82 and in PG cells, up-regulate wild type p53 level in all three cells. SeO2 decreased the ROS and Ca2+ level markedly within three tested cells. Conclusion: SeO2 showed anti-tumor effect via apoptosis pathway in three lung cancer cell lines. The decrease of ROS and Ca2+ level within cells as well as regulation of Bcl-2 and p53 expression may play important roles in above apoptotic procedure.展开更多
AIM To investigate the antitumor activity of α-hederin in hepatocellular carcinoma(HCC) cells and its underlying mechanisms in vitro and in vivo.METHODS SMMC-7721, Hep G-2 and Huh-7 HCC cells were cultured in vitro a...AIM To investigate the antitumor activity of α-hederin in hepatocellular carcinoma(HCC) cells and its underlying mechanisms in vitro and in vivo.METHODS SMMC-7721, Hep G-2 and Huh-7 HCC cells were cultured in vitro and treated with α-hederin(0, 5 μmol/L, 10 μmol/L, 15 μmol/L, 20 μmol/L, 25 μmol/L, 30 μmol/L, 35 μmol/L, 40 μmol/L, 45 μmol/L, 50 μmol/L, 55 μmol/L, or 60 μmol/L) for 12 h, 24 h, or 36 h, and cell viability was then detected by the Cell Counting Kit-8. SMMC-7721cells were treated with 0, 5 μmol/L, 10 μmol/L, or 20 μmol/L α-hederin for 24 h with or without DL-buthionineS,R-sulfoximine(2 mmol/L) or N-acetylcysteine(5 mmol/L) pretreatment for 2 h, and additional assays were subsequently performed. Apoptosis was observed after Hoechst staining. Glutathione(GSH) and adenosine triphosphate(ATP) levels were measured using GSH and ATP Assay Kits. Intracellular reactive oxygen species(ROS) levels were determined by measuring the oxidative conversion of 2',7'-dichlorofluorescin diacetate. Disruption of the mitochondrial membrane potential was evaluated using JC-1 staining. The protein levels of Bax, Bcl-2, cleaved caspase-3, cleaved caspase-9, apoptosis-inducing factor and cytochrome C were detected by western blotting. The antitumor efficacy of α-hederin in vivo was evaluated in a xenograft tumor model.RESULTS The α-hederin treatment induced apoptosis of HCC cells. The apoptosis rates in the control, low-dose α-hederin(5 μmol/L), mid-dose α-hederin(10 μmol/L) and highdose α-hederin(20 μmol/L) groups were 0.90% ± 0.26%, 12% ± 2.0%, 21% ± 2.1% and 37% ± 3.8%, respectively(P < 0.05). The α-hederin treatment reduced intracellular GSH and ATP levels, induced ROS, disrupted the mitochondrial membrane potential, increased the protein levels of Bax, cleaved caspase-3, cleaved caspase-9, apoptosis-inducing factor and cytochrome C, and decreased Bcl-2 expression. The α-hederin treatment also inhibited xenograft tumor growth in vivo. CONCLUSION The α-hederin saponin induces apoptosis of HCC cells via the mitochondrial pathway mediated by increased intracellular ROS and may be an effective treatment for human HCC.展开更多
This study investigated the role of reactive oxygen species(ROS) in the pathogenesis of triptolide-induced renal injury in vivo.Rats were randomly divided into 4 groups(n=5 in each):triptolide group in which the ...This study investigated the role of reactive oxygen species(ROS) in the pathogenesis of triptolide-induced renal injury in vivo.Rats were randomly divided into 4 groups(n=5 in each):triptolide group in which the rats were intraperitoneally injected with triptolide solution at a dose of 1 mg/kg of body weight on day 8;control group in which the rats received a single intraperitoneal injection of 0.9% physiological saline on day 8;vitamin C group in which the rats were pretreated with vitamin C by gavage at a dose of 250 mg/kg of body weight per day for 7 days before the same treatment as the control group on day 8;triptolide+vitamin C group in which the rats were first subjected to an oral administration of vitamin C at a dose of 250 mg/kg of body weight per day for 7 days,and then to the same treatment as the triptolide group on day 8.All the rats were sacrificed on day 10.Blood samples were collected for detection of plasma creatinine(Pcr) and plasma urea nitrogen(PUN) concentrations.Both kidneys were removed.The histological changes were measured by haematoxylin-eosin(HE) staining.The production of ROS was determined by detecting the fluorescent intensity of the oxida-tion-sensitive probe rhodamine 123 in renal tissue.Renal malondialdehyde(MDA) content was meas-ured to evaluate lipid peroxidation level in renal tissue.TUNEL staining was performed to assess apop-tosis of renal tubular cells.Renal expression of apoptosis-related proteins Bcl-2,Bax,Bid,Bad,Fas and FasL,as well as corresponding encoding genes were assessed by Western Blotting and real-time PCR.The results showed that triptolide treatment promoted the generation of a great amount of ROS,up-regulated the expression of Bax,Bid,Bad,Fas and FasL at both protein and mRNA levels,as well as the ratio of Bax to Bcl-2,and caused the apoptosis of renal tubular cells and renal injury.However,pretreatment with an antioxidant,vitamin C,significantly reduced the generation of ROS and effectively inhibited the triptolide-induced apoptosis of renal tubular cells and renal injury.It was concluded that ROS plays a critical role in triptolide-induced apoptosis of renal tubular cells and renal injury.The protective administration of vitamin C may help alleviate triptolide-induced renal injury and nephrotoxicity.展开更多
OBJECTIVE: Preventive measures against skin melanoma like chemotherapy are useful but suffer from chronic side effects and drug resistance. Ethanolic extract of Phytolacca decandra (PD), used in homeopathy for the ...OBJECTIVE: Preventive measures against skin melanoma like chemotherapy are useful but suffer from chronic side effects and drug resistance. Ethanolic extract of Phytolacca decandra (PD), used in homeopathy for the treatment of various ailments like chronic rheumatism, regular conjunctivitis, psoriasis, and in some skin diseases was tested for its possible anticancer potential. METHODS: Cytotoxicity of the drug was tested by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay on both normal (peripheral blood mononuclear cells) and A375 cells. Fluorescence microscopic study of 4',6-diamidino-2-phenylindole dihydrochloride-stained cells was conducted for DNA fragmentation assay, and changes in cellular morphology, if any, were also recorded. Lactate dehydrogenase activity assay was done to evaluate the percentages of apoptosis and necrosis. Reactive oxygen species (ROS) accumulation, if any, and expression study of apoptotic genes also were evaluated to pin-point the actual events of apoptosis. RESULTS: Results showed that PD administration caused a remarkable reduction in proliferation of A375 cells, without showing much cytotoxicity on peripheral blood mononuclear cells. Generation of ROS and DNA damage, which made the cancer cells prone to apoptosis, were found to be enhanced in PD-treated cells. These results were duly supported by the analytical data on expression of different cellular and nuclear proteins, as for example, by down- regulation of Akt and Bcl-2, up-regulation of p53, Bax and caspase 3, and an increase in number of cell deaths by apoptosis in A375 cells. CONCLUSION: Overall results demonstrate anticancer potentials of PD on A375 cells through activation of caspase-mediated signaling and ROS generation.展开更多
AIM: To identify whether JTE-522 can induce apoptosis in AGS cells and ROS also involved in the process, and to investigate the changes in NF-kB, p53, bcl-2 and caspase in the apoptosis process. METHODS: Cell culture,...AIM: To identify whether JTE-522 can induce apoptosis in AGS cells and ROS also involved in the process, and to investigate the changes in NF-kB, p53, bcl-2 and caspase in the apoptosis process. METHODS: Cell culture, MTT, Electromicroscopy, agarose gel electrophoresis, lucigenin, Western blot and electrophoretic mobility shift assay (EMSA) analysis were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanisms. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Lucigenin assay showed the generation of ROS in cells under incubation with JTE-522. The increased ROS generation might contribute to the induction of AGS cells to apoptosis. EMSA and Western blot revealed that NF-kB activity was almost completely inhibited by preventing the degradation of IkBalpha. Additionally, by using Western blot we confirmed that the level of bcl-2 was decreased, whereas p53 showed a great increase following JTE-522 treatment. Their changes were in a dose-dependent manner. CONCLUSION: These findings suggest that reactive oxygen species, NF-kB, p53, bcl-2 and caspase-3 may play an important role in the induction of apoptosis in AGS cells after treatment with JTE-522.展开更多
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of t...Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS^independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.展开更多
AIM:To explore the apoptosis of ARPE-19 cells after the treatment with different doses of all-trans-retinoic acid(ATRA).METHODS:ARPE-19 cells were used in the in-vitro experiment.Flow cytometry assay was employed to e...AIM:To explore the apoptosis of ARPE-19 cells after the treatment with different doses of all-trans-retinoic acid(ATRA).METHODS:ARPE-19 cells were used in the in-vitro experiment.Flow cytometry assay was employed to evaluate the level of reactive oxygen species(ROS)and apoptosis.The effects of ATRA(concentrations from 2.5 to 20μmol/L)on the expression of endoplasmic reticulum stress(ERS)markers in vitro were evaluated by Western blot and realtime quantitative polymerase chain reaction(qRT-PCR)assays.The contribution of ROS and ERS-induced apoptosis in vitro was determined by using N-acetyl-L-cysteine(NAC)and Salubrinal,an antagonist of NAC and ERS,respectively.RESULTS:Flow cytometry showed that ATRA significantly increased ARPE-19 cell apoptosis and ROS levels in each group(F=86.39,P<0.001;F=116.839.P<0.001).Western blot and qRT-PCR revealed that levels of CHOP and BIP were elevated in a concentration-dependent pattern after the cells were incubated with ATRA(2.5-20μmol/L).The upregulation of VEGF-A and CHOP induced by ATRA could be inhibited by NAC(antioxidant)and Salubrinal(ERS inhibitor)in vitro.CONCLUSION:ATRA induces the apoptosis of ARPE-19 cells via activated ROS and ERS signaling pathways.展开更多
Traditional Chinese medicine(TCM)has been increasingly applied in both preventing and treating a variety of cancers in the last decades,attributing to its fewer side effects as compared with chemotherapy drugs.Hellebr...Traditional Chinese medicine(TCM)has been increasingly applied in both preventing and treating a variety of cancers in the last decades,attributing to its fewer side effects as compared with chemotherapy drugs.Hellebrigenin,a component of Chanpi from the skin of Bufo bufogargarizans Cantor or Duttaphrynus melanostictus has been reported to have an obvious anti-cancer activity on various cancers.However,the effect and mechanism of hellebrigenin on colorectal cancers were still unknown.Herein,the present study demonstrated hellebrigenin significantly reduced viability and triggered apoptosis via the intrinsic pathway in colorectal cancer cell lines HCT116 and HT29 in vitro and in vivo.Moreover,hellebrigenin led to a reduction of mitochondrial membrane potential.In addition,treatment with hellebrigenin could result in the induction of excessive reactive oxygen species,which led to cell apoptosis.These results indicated that hellebrigenin had anti-cancer potential in the treatment of colorectal cancers.展开更多
Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissu...Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissues in surgery. AGEs were administered during chondrocytes culture. The rapamycin was used to induce autophagy. The cell viability was determined by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide(MTT) assay.The expression of tumor necrosis factor-α(TNF-α) and nuclear factor-κ B(NF-κ B) was detected by quantitative real-time polymerase chain reaction. The reactive oxygen species(ROS) production and apoptosis of the chondrocytes were determined by fluorescent probe and flow cytometer, respectively. Results: The chondrocytes viability was significantly reduced after 12 h incubation with AGEs(P<0.01)). In contrast, rapamycin pretreatment increased the chondrocytes viability through autophagy. AGEs increased TNF-α and NF-κ B mRNA expression of chondrocytes and autophagy receded or proceeded the change. AGEs increased intracellular ROS accumulation and autophagy reversed the change. AGEs accelerated chondrocytes apoptosis and autophagy suspended apoptosis. Conclusions: Accumulation of AGEs may have an adverse role for chondrocytes by increasing TNF-α and NF-κB expression, ROS accumulation and apoptosis; meanwhile, autophagy ameliorates the AGEsinduced adverse effects.展开更多
Objective This paper aims to investigate the apoptotic effect of inactivated Sendai virus (hemagglutinating virus of Japan-enveloped, HVJ-E) on routine melanoma cells (B16FlO) and the possible mechanisms involved ...Objective This paper aims to investigate the apoptotic effect of inactivated Sendai virus (hemagglutinating virus of Japan-enveloped, HVJ-E) on routine melanoma cells (B16FlO) and the possible mechanisms involved in the putative apoptotic reactions. Methods B16F10 cells were treated with HVJ-E at various multiplicities of infection (MOI), and the reactive oxygen species (ROS), cell viability, and apoptosis were measured. Next, the roles of ROS in the regulation of Bcl-2/Bax and the activation of mitogen-activated protein kinase (MAPK) pathways in HVJ-E-treated B16F10 cells were analyzed. To further evaluate the cytotoxic effect of HVJ-E-generated ROS on B16FlO cells, HVJ-E was intratumorally injected, both with and without N-acetyI-L-cysteine (NAC), into melanoma tumors on BALB/c mice. Tumor volume was then monitored for 3 weeks, and the tumor proteins were separated for immunoblot assay. Results Treatment of B16F10 cells with HVJ-E resulted in a dose-dependent inhibition of cell-viability and an induction of apoptosis. The latter effect was associated with the generation of ROS. Inhibition of ROS generation by NAC resulted in a significant reduction of HVJ-E-induced Erkl/2, JNK, and p38 MAPK activation. Additionally, ROS inhibition caused a decrease in the Bcl-2/Bax ratio as well as promoting activation of apoptosis both in vitro and in vivo. Conclusion These results suggest that HVJ-E possesses potential anticancer activity in B16F10 cells through ROS-mediated mitochondrial dysfunction involving the MAPK pathway.展开更多
Apoptosis of dopaminergic neurons in the nigrostriatal projection plays a crucial role in the pathogenesis of Parkinson’s disease (PD). Although the detailed mechanisms responsible for dopaminergic neuron loss are st...Apoptosis of dopaminergic neurons in the nigrostriatal projection plays a crucial role in the pathogenesis of Parkinson’s disease (PD). Although the detailed mechanisms responsible for dopaminergic neuron loss are still under investigation, oxidative stress is identified as a major contributor for neuronal apoptosis. In the current study, we studied the effects of MPP+, a substrate that mimics oxidative stress, on neuron-like PC12 cells and the underlying mechanisms. PC12 cells were cultured and treated by 100 μmol/L MPP+ for 4, 8, 16, 24 and 48 h, respectively. For drug pretreatment, the PC12 cells were incubated with N-acetyl-l-cysteine (NAC, 5 mmol/L), an antioxidant, SP600125 (20 μmol/L) or PD98059 (100 μmol/L), two pharmacological inhibitors of JNK and ERK1/2, for 1 h before addition of MPP+. Cell apoptosis was measured by flow cytometry. The mRNA expression of Cu2+/Zn2+-SOD, GSH-Px, Bcl-2 and Bax was detected by RT-PCR. The protein expression of p-ERK1/2 and p-JNK was determined by Western blotting. Our results showed that MPP+ exposure could induce substantial PC12 cell apoptosis. The pretreatment of SP600125 or PD98059 could effectively reduce the apoptosis rate by reducing the ratio of Bax/Bcl-2 mRNA levels. MPP+ exposure also induced high level of reactive oxy-gen species (ROS), marked by dramatic increase of Cu2+/Zn2+-SOD and GSH-Px mRNA levels. The elevated ROS was strongly associated with the activation of JNK and ERK1/2 signal pathways after MPP+ exposure, since the pretreatment of NAC significantly reduced the upregulation of p-JNK and p-ERK1/2. Finally, the pretreatment of SP600125, but not PD98059, alleviated the increase of Cu2+/Zn2+-SOD and GSH-Px mRNAs induced by MPP+, suggesting that the activation of the JNK signal pathway, but not the ERK1/2 signal pathway, could, in some degree, antagonize the generation of ROS induced by oxidative stress. In conclusion, our results suggest that JNK and ERK1/2 signal pathways, which are activated via ROS, play a crucial role in neuronal apoptosis induced by oxidative stress.展开更多
Reactive oxygen species (ROS) are produced as a byproduct of cellular metabolic pathways and function as a critical second messenger in a variety of intracellular signaling pathways. The excessive intracellular genera...Reactive oxygen species (ROS) are produced as a byproduct of cellular metabolic pathways and function as a critical second messenger in a variety of intracellular signaling pathways. The excessive intracellular generation of ROS on the other renders a cell oxidatively stressed. This involvement of ROS in numerous diseases has been documented and at different phases of the apoptotic pathway such as induction of mitochondrial permeability transition and release of mitochondrial death amplification factors, activetion of intracellular caspases and DNA damage has been clearly established. Cell death by apoptosis is a part of normal development and maintenance of tissue homeostasis. Polychlorinated biphenyls, one of the environmental pollutants which are widely used in electrical industries and lipophilic and resistant to biological decomposition accumulate through food chain. They are developmental neurotoxicants which induce neuronal apoptosis. Our studies proved that oxidative stress is induced promoting LPO and a decrease in all the antioxidant enzymes in testis, epididymis, ventral prostate, seminal vesicles, liver, kidney and brain regions. Neuronal damages were observed in all the brain regions after PCB exposure. PCB increased caspase8 mRNA/protein expression in hippocampus of adult rats. This upregulation results in Fas-FasL mediated induction of hippocampal apoptosis. Performin/granzyme induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. The production of ROS is greatly increased during reperfusion phase when oxygen becomes available and the mitochondrial respiratory chain is impaired. Furthermore, this is exacerbated by reduced antioxidant defenses.展开更多
AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after t...AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after transforming growth factorβ2(TGF-β2)induction.Apoptosis of HLECs after H_(2)O_(2) and TGF-β2 interference with or without ROS scavenger N-acetylcysteine(NAC)were assessed by flow cytometry.The corresponding protein expression levels of the EMT markerα-smooth muscle actin(α-SMA),the extracellular matrix(ECM),marker fibronectin(Fn),and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger(NAC).Wound-healing and Transwell assays were used to assess the migration capability of HLECs.RESULTS:TGF-β2 stimulates ROS production within 8h in HLECs.Additionally,TGF-β2 induced HLECs cell apoptosis,EMT/ECM synthesis protein markers expression,and pro-apoptotic proteins production;nonetheless,NAC treatment prevented these responses.Similarly,TGF-β2 promoted HLECs cell migration,whereas NAC inhibited cell migration.We further determined that although ROS initiated apoptosis,it only induced the accumulation of the EMT markerα-SMA protein,but not COL-1 or Fn.CONCLUSION:ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs;however,ROS alone are not sufficient for EMT/ECM synthesis.展开更多
Antioxidant properties elicited by plant species have a full range of perspective applications in human health care. In recent years, the prevention of cancer and cardiovascular diseases has been associated with the i...Antioxidant properties elicited by plant species have a full range of perspective applications in human health care. In recent years, the prevention of cancer and cardiovascular diseases has been associated with the ingestion of fresh fruits, vegetables or teas rich in natural antioxidants [1]. Extracts from the different part of the pomegranate plant such as juice, seed and peel have been reported to exhibit a potent antioxidant activity. But the anticarcinogenic activity of active principle from the pomegranate peel extract was not studied so far. Hence the present study was planned to explore the molecular mechanism of the anticarcinogenic activity pomegranate peel on A549 cell line. In this study, GC-MS analysis was carried out for the methanolic extract of pomegranate peel which revealed gallic acid (GA) as the major antioxidant compound in the extract. Hence GA was purified further through RP-HPLC and evaluated its anticancer potential by studying its effect on mitochondrial respiration, cell-membrane integrity, apoptotic body formation and the DNA fragmentation in cultured A549 cells. We observed increased level of reactive oxygen species in the cells treated with GA at the concentrations of 10 and 20 ug/ml. Further analysis of caspase activation (caspase 8 and 9) revealed activation of caspases 9 in the cells treated with GA at a concentration of 20 ug/ml. Thus the present study revealed that the GA isolated from the pomegranate peel extract (Kabul variety) induced apoptosis in A549 cells through intrinsic pathway.展开更多
Lumbar spinal stenosis is caused by the compression of the nerve root or cauda equina nerve by stenosis of the lumbar spinal canal or intervertebral foramen,and is manifested as chronic low back and leg pain.Danlu Ton...Lumbar spinal stenosis is caused by the compression of the nerve root or cauda equina nerve by stenosis of the lumbar spinal canal or intervertebral foramen,and is manifested as chronic low back and leg pain.Danlu Tongdu(DLTD)tablets can relieve chronic pain caused by lumbar spinal stenosis,but the molecular mechanism remains largely unknown.In this study,the potential molecular mechanism of DLTD tablets in the treatment of lumbar spinal stenosis was first predicted by the network pharmacology method.Results showed that DLTD functions in regulating anti-oxidative,apoptosis,and inflammation signaling pathways.Furthermore,the flow cytometry results showed that DLTD tablets efficiently reduced reactive oxygen species content and inhibited rat neural stem cell apoptosis induced by hydrogen peroxide.DLTD also inhibited the mitochondrial membrane potential damage induced by hydrogen peroxide.Elisa analysis showed that DLTD induced cell cycle-related protein,CDK2 and CDK4,and reduced CDKN1A protein expression level.Taken together,our study provided new insights of DLTD in treating lumbar spinal stenosis through reducing reactive oxygen species content,decreasing apoptosis by inhibiting CDKN1A and promoting CDK2 and CDK4 expression levels.展开更多
OBJECTIVE Zn-doped CuO nanocomposites(nZn-CuO NPs) are novel nanoparticles synthesized by sonochemical method.This study aimed to further investigate the antitumor effects and mechanism of nZn-CuO NPs,as well as the e...OBJECTIVE Zn-doped CuO nanocomposites(nZn-CuO NPs) are novel nanoparticles synthesized by sonochemical method.This study aimed to further investigate the antitumor effects and mechanism of nZn-CuO NPs,as well as the exact mechanism of reactive oxygen species(ROS) on nZn-CuO NPs-induced death using N-acetylcysteine(NAC).METHODS The antitumor effects of nZn-CuO NPs were evaluated by MTS assay and orthotopic transplantation tumor model in nude mice.The effects of nZn-CuO NPs with or without NAC on ROS production,DNA damage,apoptosis,mitochondrial damage,autophagy,lysosome impairment,and ER and Golgi stress were determined.Also,western blot was used to detect apoptosis and autophagy related proteins,as well as NF-κB pathway related proteins.RESULTS nZn-CuO NPs significantly inhibit tumor growth both in vitro and in vivo.nZn-CuO NPs were able to cause cytotoxicity,ROS production,DAN damage mitochondrial damage,apoptosis,and autophagy,and NAC can attenuate them.Further studies showed that nZn-CuO NPs induced changes of apoptosis,autophagy and NF-κB pathway related proteins,and NAC can restore them.CONCLUSION Overall,our data demonstrated that nZn-CuO NPs could inhibit tumor growth both in vitro and in vivo by ROS-dependent regulation of apoptosis and autophagy,which might be cross-linked by NF-κB pathways.展开更多
Objective:To study the correlation of reactive oxygen species (ROS) contents in myocardial tissue and lung tissue with tissue injury and apoptosis in the rat models with sepsis.Methods:The SD male rats were selected a...Objective:To study the correlation of reactive oxygen species (ROS) contents in myocardial tissue and lung tissue with tissue injury and apoptosis in the rat models with sepsis.Methods:The SD male rats were selected as experimental animals and divided into two groups, CLIP group were established into sepsis models by cecal ligation and puncture and Sham group received Sham operation. After model establishment, the serum was collected to determine the contents of myocardial injury and lung injury markers, and the lung tissue and myocardial tissue were collected to determine the contents of ROS and MDA as well as the expression of apoptosis genes.Results: ROS and MDA contents as well as PD-1, PD-L1, TWEAK, Caspase-3 and Caspase-9 mRNA expression in myocardial tissue and lung tissue of CLIP group were significantly higher than those of Sham group, and serum cTnI, CK-MB, SP-A, CC16 and KL-6 contents were significantly higher than those of Sham group;ROS content in myocardial tissue was positively correlated with cTnI and CK-MB contents in serum as well as PD-1, PD-L1, TWEAK, Caspase-3 and Caspase-9 mRNA expression in myocardial tissue, and ROS content in lung tissue was positively correlated with SP-A, CC16 and KL-6 contents in serum as well as PD-1, PD-L1, TWEAK, Caspase-3 and Caspase-9 mRNA expression in lung tissue.Conclusion: The increased generation of ROS in myocardial tissue and lung tissue of rat models with sepsis can cause tissue damage and apoptosis.展开更多
Biliverdin(BV) has long been thought to be a cytotoxic metabolic waste product. It has also been demonstrated to have important cytoprotective functions during oxidative stress. The present study aimed to examine th...Biliverdin(BV) has long been thought to be a cytotoxic metabolic waste product. It has also been demonstrated to have important cytoprotective functions during oxidative stress. The present study aimed to examine the cytoprotective effect of BV on NRK-52 E cells, a proximal tubular cell line derived from rat kidney. Cells were treated with 50 μmol/L cisplatin for 24 h(cisplatin group) or pre-treated with BV for 30 min, then with 50 μmol/L cisplatin for 24 h(cisplatin+BV group). Those given no treatment served as a control. Cell apoptosis was evaluated by flow cytometry and cell viability by Cell Counting Kit-8(CCK-8). The protein expressions of cleaved caspase3, Bax and Bcl-2 were assessed by Western blotting. Reactive oxygen species(ROS) levels were measured using carboxydichlorodihydrofluorescein diacetate(H2DCF). The results showed that cisplatin induced the apoptosis of NRK-52 E cells, decreased cell viability, and increased the formation of ROS by upregulating the expression of cleaved caspase3 and Bax and decreasing Bcl-2 protein expression. These effects could be significantly reversed by pretreatment with BV. It was concluded that BV can protect against cisplatin-induced cell apoptosis through the anti-oxidative effects.展开更多
Double staining flow cytometry was performed using 7-amino actinomycin D and 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate,to detect the level fluctuation of reactive oxygen species (ROS) during the cel...Double staining flow cytometry was performed using 7-amino actinomycin D and 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate,to detect the level fluctuation of reactive oxygen species (ROS) during the cell cycle of normal NB4 cells. Our results showed that NB4 cells possessed higher level of ROS in G2/M phase than in G1 and S phases. Double staining flow cytometry,with TdT mediated dUTP nick end labeling (Tunel) and propidium iodide (PI),indicated that As2O3 (2 μM) could induce apoptosis in NB4 cells prevailingly from G2/M phase,and this efficacy was enhanced upon co-administration of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) (2.5 μM) which could produce the endogenous ROS. These results suggested that different ROS level in different cell cycle phases of NB4 cells might determin the selective induction of G2/M apoptosis and the cells' susceptibility to apoptosis by As2O3.展开更多
基金This project was partially supported by Science Foundation of Lanzhou Command of PLA(No.YZ-0106).
文摘Objective: To evaluate the anti-tumor effects of SeO2 and its mechanisms on three human lung cancer cell lines. Methods: Three lung cancer cells A549, GLC-82 and PG were treated with 3-30 μmol/L SeO2. Flow cytometry was used to detect apoptosis, and analyze the changes of expression of p53 and Bcl-2, as well as ROS and Ca2+ level within cells. Results:SeO2 markedly inhibited cell proliferation and viability, and prompted apoptosis after 48 h treatment. SeO2 at 10 μmol/L induced 47.8% apoptosis in A549 cells, 40.8% in GLC-82 cells, 18.2% in PG cells. SeO2 at 30 μmol/L induced 37.8% apoposis in PG cells,but did not increase apoptotic raes in other two cells. SeO2 could down-regulate the mean fluorescent intensity of Bcl-2 from 65.8 to 9.6 in A549, but not in GLC-82 and in PG cells, up-regulate wild type p53 level in all three cells. SeO2 decreased the ROS and Ca2+ level markedly within three tested cells. Conclusion: SeO2 showed anti-tumor effect via apoptosis pathway in three lung cancer cell lines. The decrease of ROS and Ca2+ level within cells as well as regulation of Bcl-2 and p53 expression may play important roles in above apoptotic procedure.
基金Supported by the National Natural Science Foundation of China,No.81572426the Natural Science Foundation of Hubei Province,No.2015CKB755
文摘AIM To investigate the antitumor activity of α-hederin in hepatocellular carcinoma(HCC) cells and its underlying mechanisms in vitro and in vivo.METHODS SMMC-7721, Hep G-2 and Huh-7 HCC cells were cultured in vitro and treated with α-hederin(0, 5 μmol/L, 10 μmol/L, 15 μmol/L, 20 μmol/L, 25 μmol/L, 30 μmol/L, 35 μmol/L, 40 μmol/L, 45 μmol/L, 50 μmol/L, 55 μmol/L, or 60 μmol/L) for 12 h, 24 h, or 36 h, and cell viability was then detected by the Cell Counting Kit-8. SMMC-7721cells were treated with 0, 5 μmol/L, 10 μmol/L, or 20 μmol/L α-hederin for 24 h with or without DL-buthionineS,R-sulfoximine(2 mmol/L) or N-acetylcysteine(5 mmol/L) pretreatment for 2 h, and additional assays were subsequently performed. Apoptosis was observed after Hoechst staining. Glutathione(GSH) and adenosine triphosphate(ATP) levels were measured using GSH and ATP Assay Kits. Intracellular reactive oxygen species(ROS) levels were determined by measuring the oxidative conversion of 2',7'-dichlorofluorescin diacetate. Disruption of the mitochondrial membrane potential was evaluated using JC-1 staining. The protein levels of Bax, Bcl-2, cleaved caspase-3, cleaved caspase-9, apoptosis-inducing factor and cytochrome C were detected by western blotting. The antitumor efficacy of α-hederin in vivo was evaluated in a xenograft tumor model.RESULTS The α-hederin treatment induced apoptosis of HCC cells. The apoptosis rates in the control, low-dose α-hederin(5 μmol/L), mid-dose α-hederin(10 μmol/L) and highdose α-hederin(20 μmol/L) groups were 0.90% ± 0.26%, 12% ± 2.0%, 21% ± 2.1% and 37% ± 3.8%, respectively(P < 0.05). The α-hederin treatment reduced intracellular GSH and ATP levels, induced ROS, disrupted the mitochondrial membrane potential, increased the protein levels of Bax, cleaved caspase-3, cleaved caspase-9, apoptosis-inducing factor and cytochrome C, and decreased Bcl-2 expression. The α-hederin treatment also inhibited xenograft tumor growth in vivo. CONCLUSION The α-hederin saponin induces apoptosis of HCC cells via the mitochondrial pathway mediated by increased intracellular ROS and may be an effective treatment for human HCC.
文摘This study investigated the role of reactive oxygen species(ROS) in the pathogenesis of triptolide-induced renal injury in vivo.Rats were randomly divided into 4 groups(n=5 in each):triptolide group in which the rats were intraperitoneally injected with triptolide solution at a dose of 1 mg/kg of body weight on day 8;control group in which the rats received a single intraperitoneal injection of 0.9% physiological saline on day 8;vitamin C group in which the rats were pretreated with vitamin C by gavage at a dose of 250 mg/kg of body weight per day for 7 days before the same treatment as the control group on day 8;triptolide+vitamin C group in which the rats were first subjected to an oral administration of vitamin C at a dose of 250 mg/kg of body weight per day for 7 days,and then to the same treatment as the triptolide group on day 8.All the rats were sacrificed on day 10.Blood samples were collected for detection of plasma creatinine(Pcr) and plasma urea nitrogen(PUN) concentrations.Both kidneys were removed.The histological changes were measured by haematoxylin-eosin(HE) staining.The production of ROS was determined by detecting the fluorescent intensity of the oxida-tion-sensitive probe rhodamine 123 in renal tissue.Renal malondialdehyde(MDA) content was meas-ured to evaluate lipid peroxidation level in renal tissue.TUNEL staining was performed to assess apop-tosis of renal tubular cells.Renal expression of apoptosis-related proteins Bcl-2,Bax,Bid,Bad,Fas and FasL,as well as corresponding encoding genes were assessed by Western Blotting and real-time PCR.The results showed that triptolide treatment promoted the generation of a great amount of ROS,up-regulated the expression of Bax,Bid,Bad,Fas and FasL at both protein and mRNA levels,as well as the ratio of Bax to Bcl-2,and caused the apoptosis of renal tubular cells and renal injury.However,pretreatment with an antioxidant,vitamin C,significantly reduced the generation of ROS and effectively inhibited the triptolide-induced apoptosis of renal tubular cells and renal injury.It was concluded that ROS plays a critical role in triptolide-induced apoptosis of renal tubular cells and renal injury.The protective administration of vitamin C may help alleviate triptolide-induced renal injury and nephrotoxicity.
基金financially supported by a grant sanctioned to Prof. A.R. Khuda-Bukhsh, Department of Zoology,University of Kalyani, by Boiron Laboratories, Lyon, France
文摘OBJECTIVE: Preventive measures against skin melanoma like chemotherapy are useful but suffer from chronic side effects and drug resistance. Ethanolic extract of Phytolacca decandra (PD), used in homeopathy for the treatment of various ailments like chronic rheumatism, regular conjunctivitis, psoriasis, and in some skin diseases was tested for its possible anticancer potential. METHODS: Cytotoxicity of the drug was tested by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay on both normal (peripheral blood mononuclear cells) and A375 cells. Fluorescence microscopic study of 4',6-diamidino-2-phenylindole dihydrochloride-stained cells was conducted for DNA fragmentation assay, and changes in cellular morphology, if any, were also recorded. Lactate dehydrogenase activity assay was done to evaluate the percentages of apoptosis and necrosis. Reactive oxygen species (ROS) accumulation, if any, and expression study of apoptotic genes also were evaluated to pin-point the actual events of apoptosis. RESULTS: Results showed that PD administration caused a remarkable reduction in proliferation of A375 cells, without showing much cytotoxicity on peripheral blood mononuclear cells. Generation of ROS and DNA damage, which made the cancer cells prone to apoptosis, were found to be enhanced in PD-treated cells. These results were duly supported by the analytical data on expression of different cellular and nuclear proteins, as for example, by down- regulation of Akt and Bcl-2, up-regulation of p53, Bax and caspase 3, and an increase in number of cell deaths by apoptosis in A375 cells. CONCLUSION: Overall results demonstrate anticancer potentials of PD on A375 cells through activation of caspase-mediated signaling and ROS generation.
基金National Natural Science Foundation of China,No.39770300,30070873the Overseas Chinese Affairs Office of the State Council Foundation,No.98-33
文摘AIM: To identify whether JTE-522 can induce apoptosis in AGS cells and ROS also involved in the process, and to investigate the changes in NF-kB, p53, bcl-2 and caspase in the apoptosis process. METHODS: Cell culture, MTT, Electromicroscopy, agarose gel electrophoresis, lucigenin, Western blot and electrophoretic mobility shift assay (EMSA) analysis were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanisms. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Lucigenin assay showed the generation of ROS in cells under incubation with JTE-522. The increased ROS generation might contribute to the induction of AGS cells to apoptosis. EMSA and Western blot revealed that NF-kB activity was almost completely inhibited by preventing the degradation of IkBalpha. Additionally, by using Western blot we confirmed that the level of bcl-2 was decreased, whereas p53 showed a great increase following JTE-522 treatment. Their changes were in a dose-dependent manner. CONCLUSION: These findings suggest that reactive oxygen species, NF-kB, p53, bcl-2 and caspase-3 may play an important role in the induction of apoptosis in AGS cells after treatment with JTE-522.
文摘Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS^independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
基金Supported by National Natural Science Foundation of China(No.81170872)。
文摘AIM:To explore the apoptosis of ARPE-19 cells after the treatment with different doses of all-trans-retinoic acid(ATRA).METHODS:ARPE-19 cells were used in the in-vitro experiment.Flow cytometry assay was employed to evaluate the level of reactive oxygen species(ROS)and apoptosis.The effects of ATRA(concentrations from 2.5 to 20μmol/L)on the expression of endoplasmic reticulum stress(ERS)markers in vitro were evaluated by Western blot and realtime quantitative polymerase chain reaction(qRT-PCR)assays.The contribution of ROS and ERS-induced apoptosis in vitro was determined by using N-acetyl-L-cysteine(NAC)and Salubrinal,an antagonist of NAC and ERS,respectively.RESULTS:Flow cytometry showed that ATRA significantly increased ARPE-19 cell apoptosis and ROS levels in each group(F=86.39,P<0.001;F=116.839.P<0.001).Western blot and qRT-PCR revealed that levels of CHOP and BIP were elevated in a concentration-dependent pattern after the cells were incubated with ATRA(2.5-20μmol/L).The upregulation of VEGF-A and CHOP induced by ATRA could be inhibited by NAC(antioxidant)and Salubrinal(ERS inhibitor)in vitro.CONCLUSION:ATRA induces the apoptosis of ARPE-19 cells via activated ROS and ERS signaling pathways.
基金supported by the Guizhou Provincial Science&Technology Program(QKHZC[2020]4Y154)the Science&Technology Plan of Zunyi(2018[18])+4 种基金the Funding of Guizhou Administration of Traditional Chinese Medicine(QZYY-2020-042)the Science and Technology Plan Project of Guizhou(QKHPTRC[2017]5733-059,QKPTRC[2019]-014)Innovation Talent Team of Zunyi(ZSKRC[2019]1)Innovation and Entrepreneurship Project for College Students of Zunyi Medical University(ZYDC2020099)The Science and Technology Plan Project of Guizhou(QKHPTRC[2017]5733–059).
文摘Traditional Chinese medicine(TCM)has been increasingly applied in both preventing and treating a variety of cancers in the last decades,attributing to its fewer side effects as compared with chemotherapy drugs.Hellebrigenin,a component of Chanpi from the skin of Bufo bufogargarizans Cantor or Duttaphrynus melanostictus has been reported to have an obvious anti-cancer activity on various cancers.However,the effect and mechanism of hellebrigenin on colorectal cancers were still unknown.Herein,the present study demonstrated hellebrigenin significantly reduced viability and triggered apoptosis via the intrinsic pathway in colorectal cancer cell lines HCT116 and HT29 in vitro and in vivo.Moreover,hellebrigenin led to a reduction of mitochondrial membrane potential.In addition,treatment with hellebrigenin could result in the induction of excessive reactive oxygen species,which led to cell apoptosis.These results indicated that hellebrigenin had anti-cancer potential in the treatment of colorectal cancers.
文摘Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissues in surgery. AGEs were administered during chondrocytes culture. The rapamycin was used to induce autophagy. The cell viability was determined by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide(MTT) assay.The expression of tumor necrosis factor-α(TNF-α) and nuclear factor-κ B(NF-κ B) was detected by quantitative real-time polymerase chain reaction. The reactive oxygen species(ROS) production and apoptosis of the chondrocytes were determined by fluorescent probe and flow cytometer, respectively. Results: The chondrocytes viability was significantly reduced after 12 h incubation with AGEs(P<0.01)). In contrast, rapamycin pretreatment increased the chondrocytes viability through autophagy. AGEs increased TNF-α and NF-κ B mRNA expression of chondrocytes and autophagy receded or proceeded the change. AGEs increased intracellular ROS accumulation and autophagy reversed the change. AGEs accelerated chondrocytes apoptosis and autophagy suspended apoptosis. Conclusions: Accumulation of AGEs may have an adverse role for chondrocytes by increasing TNF-α and NF-κB expression, ROS accumulation and apoptosis; meanwhile, autophagy ameliorates the AGEsinduced adverse effects.
基金the National Natural Science foundation of China(No.31302042)the Natural Science Foundation of Jiangsu Province(BK20130445)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Young and Middle-aged Academic Leaders Plan of Yangzhou University
文摘Objective This paper aims to investigate the apoptotic effect of inactivated Sendai virus (hemagglutinating virus of Japan-enveloped, HVJ-E) on routine melanoma cells (B16FlO) and the possible mechanisms involved in the putative apoptotic reactions. Methods B16F10 cells were treated with HVJ-E at various multiplicities of infection (MOI), and the reactive oxygen species (ROS), cell viability, and apoptosis were measured. Next, the roles of ROS in the regulation of Bcl-2/Bax and the activation of mitogen-activated protein kinase (MAPK) pathways in HVJ-E-treated B16F10 cells were analyzed. To further evaluate the cytotoxic effect of HVJ-E-generated ROS on B16FlO cells, HVJ-E was intratumorally injected, both with and without N-acetyI-L-cysteine (NAC), into melanoma tumors on BALB/c mice. Tumor volume was then monitored for 3 weeks, and the tumor proteins were separated for immunoblot assay. Results Treatment of B16F10 cells with HVJ-E resulted in a dose-dependent inhibition of cell-viability and an induction of apoptosis. The latter effect was associated with the generation of ROS. Inhibition of ROS generation by NAC resulted in a significant reduction of HVJ-E-induced Erkl/2, JNK, and p38 MAPK activation. Additionally, ROS inhibition caused a decrease in the Bcl-2/Bax ratio as well as promoting activation of apoptosis both in vitro and in vivo. Conclusion These results suggest that HVJ-E possesses potential anticancer activity in B16F10 cells through ROS-mediated mitochondrial dysfunction involving the MAPK pathway.
文摘Apoptosis of dopaminergic neurons in the nigrostriatal projection plays a crucial role in the pathogenesis of Parkinson’s disease (PD). Although the detailed mechanisms responsible for dopaminergic neuron loss are still under investigation, oxidative stress is identified as a major contributor for neuronal apoptosis. In the current study, we studied the effects of MPP+, a substrate that mimics oxidative stress, on neuron-like PC12 cells and the underlying mechanisms. PC12 cells were cultured and treated by 100 μmol/L MPP+ for 4, 8, 16, 24 and 48 h, respectively. For drug pretreatment, the PC12 cells were incubated with N-acetyl-l-cysteine (NAC, 5 mmol/L), an antioxidant, SP600125 (20 μmol/L) or PD98059 (100 μmol/L), two pharmacological inhibitors of JNK and ERK1/2, for 1 h before addition of MPP+. Cell apoptosis was measured by flow cytometry. The mRNA expression of Cu2+/Zn2+-SOD, GSH-Px, Bcl-2 and Bax was detected by RT-PCR. The protein expression of p-ERK1/2 and p-JNK was determined by Western blotting. Our results showed that MPP+ exposure could induce substantial PC12 cell apoptosis. The pretreatment of SP600125 or PD98059 could effectively reduce the apoptosis rate by reducing the ratio of Bax/Bcl-2 mRNA levels. MPP+ exposure also induced high level of reactive oxy-gen species (ROS), marked by dramatic increase of Cu2+/Zn2+-SOD and GSH-Px mRNA levels. The elevated ROS was strongly associated with the activation of JNK and ERK1/2 signal pathways after MPP+ exposure, since the pretreatment of NAC significantly reduced the upregulation of p-JNK and p-ERK1/2. Finally, the pretreatment of SP600125, but not PD98059, alleviated the increase of Cu2+/Zn2+-SOD and GSH-Px mRNAs induced by MPP+, suggesting that the activation of the JNK signal pathway, but not the ERK1/2 signal pathway, could, in some degree, antagonize the generation of ROS induced by oxidative stress. In conclusion, our results suggest that JNK and ERK1/2 signal pathways, which are activated via ROS, play a crucial role in neuronal apoptosis induced by oxidative stress.
文摘Reactive oxygen species (ROS) are produced as a byproduct of cellular metabolic pathways and function as a critical second messenger in a variety of intracellular signaling pathways. The excessive intracellular generation of ROS on the other renders a cell oxidatively stressed. This involvement of ROS in numerous diseases has been documented and at different phases of the apoptotic pathway such as induction of mitochondrial permeability transition and release of mitochondrial death amplification factors, activetion of intracellular caspases and DNA damage has been clearly established. Cell death by apoptosis is a part of normal development and maintenance of tissue homeostasis. Polychlorinated biphenyls, one of the environmental pollutants which are widely used in electrical industries and lipophilic and resistant to biological decomposition accumulate through food chain. They are developmental neurotoxicants which induce neuronal apoptosis. Our studies proved that oxidative stress is induced promoting LPO and a decrease in all the antioxidant enzymes in testis, epididymis, ventral prostate, seminal vesicles, liver, kidney and brain regions. Neuronal damages were observed in all the brain regions after PCB exposure. PCB increased caspase8 mRNA/protein expression in hippocampus of adult rats. This upregulation results in Fas-FasL mediated induction of hippocampal apoptosis. Performin/granzyme induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. The production of ROS is greatly increased during reperfusion phase when oxygen becomes available and the mitochondrial respiratory chain is impaired. Furthermore, this is exacerbated by reduced antioxidant defenses.
基金Supported by the National Natural Science Foundation of China(No.82201163,No.81800812)Natural Science Foundation Youth Foundation of Shaanxi Province(No.2023-JC-QN-0861)Shaanxi Province Key Research and Development Program(No.2023-YBSF-483).
文摘AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after transforming growth factorβ2(TGF-β2)induction.Apoptosis of HLECs after H_(2)O_(2) and TGF-β2 interference with or without ROS scavenger N-acetylcysteine(NAC)were assessed by flow cytometry.The corresponding protein expression levels of the EMT markerα-smooth muscle actin(α-SMA),the extracellular matrix(ECM),marker fibronectin(Fn),and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger(NAC).Wound-healing and Transwell assays were used to assess the migration capability of HLECs.RESULTS:TGF-β2 stimulates ROS production within 8h in HLECs.Additionally,TGF-β2 induced HLECs cell apoptosis,EMT/ECM synthesis protein markers expression,and pro-apoptotic proteins production;nonetheless,NAC treatment prevented these responses.Similarly,TGF-β2 promoted HLECs cell migration,whereas NAC inhibited cell migration.We further determined that although ROS initiated apoptosis,it only induced the accumulation of the EMT markerα-SMA protein,but not COL-1 or Fn.CONCLUSION:ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs;however,ROS alone are not sufficient for EMT/ECM synthesis.
文摘Antioxidant properties elicited by plant species have a full range of perspective applications in human health care. In recent years, the prevention of cancer and cardiovascular diseases has been associated with the ingestion of fresh fruits, vegetables or teas rich in natural antioxidants [1]. Extracts from the different part of the pomegranate plant such as juice, seed and peel have been reported to exhibit a potent antioxidant activity. But the anticarcinogenic activity of active principle from the pomegranate peel extract was not studied so far. Hence the present study was planned to explore the molecular mechanism of the anticarcinogenic activity pomegranate peel on A549 cell line. In this study, GC-MS analysis was carried out for the methanolic extract of pomegranate peel which revealed gallic acid (GA) as the major antioxidant compound in the extract. Hence GA was purified further through RP-HPLC and evaluated its anticancer potential by studying its effect on mitochondrial respiration, cell-membrane integrity, apoptotic body formation and the DNA fragmentation in cultured A549 cells. We observed increased level of reactive oxygen species in the cells treated with GA at the concentrations of 10 and 20 ug/ml. Further analysis of caspase activation (caspase 8 and 9) revealed activation of caspases 9 in the cells treated with GA at a concentration of 20 ug/ml. Thus the present study revealed that the GA isolated from the pomegranate peel extract (Kabul variety) induced apoptosis in A549 cells through intrinsic pathway.
基金financially supported by the National Science Foundation of China(No.32271440).
文摘Lumbar spinal stenosis is caused by the compression of the nerve root or cauda equina nerve by stenosis of the lumbar spinal canal or intervertebral foramen,and is manifested as chronic low back and leg pain.Danlu Tongdu(DLTD)tablets can relieve chronic pain caused by lumbar spinal stenosis,but the molecular mechanism remains largely unknown.In this study,the potential molecular mechanism of DLTD tablets in the treatment of lumbar spinal stenosis was first predicted by the network pharmacology method.Results showed that DLTD functions in regulating anti-oxidative,apoptosis,and inflammation signaling pathways.Furthermore,the flow cytometry results showed that DLTD tablets efficiently reduced reactive oxygen species content and inhibited rat neural stem cell apoptosis induced by hydrogen peroxide.DLTD also inhibited the mitochondrial membrane potential damage induced by hydrogen peroxide.Elisa analysis showed that DLTD induced cell cycle-related protein,CDK2 and CDK4,and reduced CDKN1A protein expression level.Taken together,our study provided new insights of DLTD in treating lumbar spinal stenosis through reducing reactive oxygen species content,decreasing apoptosis by inhibiting CDKN1A and promoting CDK2 and CDK4 expression levels.
基金supported by Natural Science Foundation of China(81774191) Beijing Natural Science Foundation(7172031) Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th5-year Plan(CIT&TCD201804086)
文摘OBJECTIVE Zn-doped CuO nanocomposites(nZn-CuO NPs) are novel nanoparticles synthesized by sonochemical method.This study aimed to further investigate the antitumor effects and mechanism of nZn-CuO NPs,as well as the exact mechanism of reactive oxygen species(ROS) on nZn-CuO NPs-induced death using N-acetylcysteine(NAC).METHODS The antitumor effects of nZn-CuO NPs were evaluated by MTS assay and orthotopic transplantation tumor model in nude mice.The effects of nZn-CuO NPs with or without NAC on ROS production,DNA damage,apoptosis,mitochondrial damage,autophagy,lysosome impairment,and ER and Golgi stress were determined.Also,western blot was used to detect apoptosis and autophagy related proteins,as well as NF-κB pathway related proteins.RESULTS nZn-CuO NPs significantly inhibit tumor growth both in vitro and in vivo.nZn-CuO NPs were able to cause cytotoxicity,ROS production,DAN damage mitochondrial damage,apoptosis,and autophagy,and NAC can attenuate them.Further studies showed that nZn-CuO NPs induced changes of apoptosis,autophagy and NF-κB pathway related proteins,and NAC can restore them.CONCLUSION Overall,our data demonstrated that nZn-CuO NPs could inhibit tumor growth both in vitro and in vivo by ROS-dependent regulation of apoptosis and autophagy,which might be cross-linked by NF-κB pathways.
文摘Objective:To study the correlation of reactive oxygen species (ROS) contents in myocardial tissue and lung tissue with tissue injury and apoptosis in the rat models with sepsis.Methods:The SD male rats were selected as experimental animals and divided into two groups, CLIP group were established into sepsis models by cecal ligation and puncture and Sham group received Sham operation. After model establishment, the serum was collected to determine the contents of myocardial injury and lung injury markers, and the lung tissue and myocardial tissue were collected to determine the contents of ROS and MDA as well as the expression of apoptosis genes.Results: ROS and MDA contents as well as PD-1, PD-L1, TWEAK, Caspase-3 and Caspase-9 mRNA expression in myocardial tissue and lung tissue of CLIP group were significantly higher than those of Sham group, and serum cTnI, CK-MB, SP-A, CC16 and KL-6 contents were significantly higher than those of Sham group;ROS content in myocardial tissue was positively correlated with cTnI and CK-MB contents in serum as well as PD-1, PD-L1, TWEAK, Caspase-3 and Caspase-9 mRNA expression in myocardial tissue, and ROS content in lung tissue was positively correlated with SP-A, CC16 and KL-6 contents in serum as well as PD-1, PD-L1, TWEAK, Caspase-3 and Caspase-9 mRNA expression in lung tissue.Conclusion: The increased generation of ROS in myocardial tissue and lung tissue of rat models with sepsis can cause tissue damage and apoptosis.
文摘Biliverdin(BV) has long been thought to be a cytotoxic metabolic waste product. It has also been demonstrated to have important cytoprotective functions during oxidative stress. The present study aimed to examine the cytoprotective effect of BV on NRK-52 E cells, a proximal tubular cell line derived from rat kidney. Cells were treated with 50 μmol/L cisplatin for 24 h(cisplatin group) or pre-treated with BV for 30 min, then with 50 μmol/L cisplatin for 24 h(cisplatin+BV group). Those given no treatment served as a control. Cell apoptosis was evaluated by flow cytometry and cell viability by Cell Counting Kit-8(CCK-8). The protein expressions of cleaved caspase3, Bax and Bcl-2 were assessed by Western blotting. Reactive oxygen species(ROS) levels were measured using carboxydichlorodihydrofluorescein diacetate(H2DCF). The results showed that cisplatin induced the apoptosis of NRK-52 E cells, decreased cell viability, and increased the formation of ROS by upregulating the expression of cleaved caspase3 and Bax and decreasing Bcl-2 protein expression. These effects could be significantly reversed by pretreatment with BV. It was concluded that BV can protect against cisplatin-induced cell apoptosis through the anti-oxidative effects.
基金supported by research grants from National Natural Science Foundation of China(No.30170475)
文摘Double staining flow cytometry was performed using 7-amino actinomycin D and 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate,to detect the level fluctuation of reactive oxygen species (ROS) during the cell cycle of normal NB4 cells. Our results showed that NB4 cells possessed higher level of ROS in G2/M phase than in G1 and S phases. Double staining flow cytometry,with TdT mediated dUTP nick end labeling (Tunel) and propidium iodide (PI),indicated that As2O3 (2 μM) could induce apoptosis in NB4 cells prevailingly from G2/M phase,and this efficacy was enhanced upon co-administration of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) (2.5 μM) which could produce the endogenous ROS. These results suggested that different ROS level in different cell cycle phases of NB4 cells might determin the selective induction of G2/M apoptosis and the cells' susceptibility to apoptosis by As2O3.