Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observat...Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them be applied to study the origin of the diversity with observations and we show how such models can of SNe Ia.展开更多
I use recent observational and theoretical studies of type Ia supernovae(SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger o...I use recent observational and theoretical studies of type Ia supernovae(SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf(WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay(MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common(normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.展开更多
文摘Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them be applied to study the origin of the diversity with observations and we show how such models can of SNe Ia.
基金supported by the Israel Science Foundationthe E.and J.Bishop Research Fund at the Technion
文摘I use recent observational and theoretical studies of type Ia supernovae(SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf(WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay(MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common(normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.