In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of dista...In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B.A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B.The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set.The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm(BAOA).The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph belongs to the dominant resolving set.The feasibility is enforced by repairing objects such that an additional vertex generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant resolving set.This is the first attempt to determine the dominant metric dimension problem heuristically.The proposed BAOA is compared to binary whale optimization(BWOA)and binary particle optimization(BPSO)algorithms.Computational results confirm the superiority of the BAOA for computing the dominant metric dimension.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and fiv...Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and five groups of constraints areproposed.A bio-mimicked Binary Bees Algorithm (BBA) is introduced to solve this multiobjective multiconstraint combinatorialoptimisation problem, in which constraint handling technique (Multiobjective Transformation, MOT), multiobjectiveevaluation method (nondominance selection), global search strategy (stochastic search in the variable space), local searchstrategy (Hamming neighbourhood exploitation), and post-processing means (feasibility selection) are the main issues.TheBBA is then demonstrated with a case study, presenting the execution process of the algorithm, and also explaining the change ofelite number in evolutionary process.Its optimisation result provides a group of feasible nondominated two-level distributionschemes.展开更多
A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labe...A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components.展开更多
The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms fo...The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs, i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail. Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.展开更多
Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 20...Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019(COVID-19)pandemic.The used model is the most appropriate among the three most common location models utilized to solve healthcare problems(the set covering model,the maximal covering model,and the P-median model).The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints.The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction.The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt.In this case study,a discrete binary gaining–sharing knowledge-based optimization(DBGSK)algorithm is proposed.The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life.The DBGSK algorithm mainly depends on two junior and senior binary stages.These two stages enable DBGSK to explore and exploit the search space efficiently and effectively,and thus it can solve problems in binary space.展开更多
Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence ...Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained.展开更多
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
A novel pitch determination algorithm with binary lateral inhibition network (BLIN) is proposed in this paper. A thread like spectrum, which is composed of the fundamental frequency and its harmonic components, is a...A novel pitch determination algorithm with binary lateral inhibition network (BLIN) is proposed in this paper. A thread like spectrum, which is composed of the fundamental frequency and its harmonic components, is acquired by applying a BLIN to the short time spectrum of the speech signal. Then the pitch is determined by the average interval of harmonics. The algorithm is evaluated on COSDIC speech database. For comparison, the same results obtained from the same speech sample with the cepstrum and autocorrelation based pitch determination algorithms are also presented. The results show that the new algorithm is superior to the cepstrum and autocorrelation based pitch determination algorithms.展开更多
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no...This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.展开更多
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc...In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension.展开更多
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria...Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.展开更多
Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori...Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.展开更多
The modeling of dynamical systems from a time series implemented by our DSA program introduces binary trees of height D with all leaves on the same level, and the related subtrees of height L 〈 D. These are called e-...The modeling of dynamical systems from a time series implemented by our DSA program introduces binary trees of height D with all leaves on the same level, and the related subtrees of height L 〈 D. These are called e-trees and e-subtrees. The recursive and nonrecursive versions of the traversal algorithms for the trees with dynamically created nodes are discussed. The original nonrecursive algorithms that return the pointer to the next node in preorder, inorder and postorder traversals are presented. The space-time complexity analysis shows and the execution time measurements confirm that for these O(2D) algorithms, the recursive versions have approximately 10-25% better time constants. Still, the use of nonrecursive algorithms may be more appropriate in several occasions.展开更多
Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ens...Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model.展开更多
Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed...Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence.展开更多
The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a ...The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a major issue in the city,municipalities in the aspects of the environment,and logistics.An efficient supply chain with edge computing technology is used in managing medical waste.The supply chain operations include processing of waste collec-tion,transportation,and disposal of waste.Many research works have been applied to improve the management of wastage.The main issues in the existing techniques are ineffective and expensive and centralized edge computing which leads to failure in providing security,trustworthiness,and transparency.To over-come these issues,in this paper we implement an efficient Naive Bayes classifier algorithm and Q-Learning algorithm in decentralized edge computing technology with a binary bat optimization algorithm(NBQ-BBOA).This proposed work is used to track,detect,and manage medical waste.To minimize the transferring cost of medical wastage from various nodes,the Q-Learning algorithm is used.The accuracy obtained for the Naïve Bayes algorithm is 88%,the Q-Learning algo-rithm is 82%and NBQ-BBOA is 98%.The error rate of Root Mean Square Error(RMSE)and Mean Error(MAE)for the proposed work NBQ-BBOA are 0.012 and 0.045.展开更多
With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, ne...With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.展开更多
文摘In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B.A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B.The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set.The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm(BAOA).The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph belongs to the dominant resolving set.The feasibility is enforced by repairing objects such that an additional vertex generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant resolving set.This is the first attempt to determine the dominant metric dimension problem heuristically.The proposed BAOA is compared to binary whale optimization(BWOA)and binary particle optimization(BPSO)algorithms.Computational results confirm the superiority of the BAOA for computing the dominant metric dimension.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
文摘Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and five groups of constraints areproposed.A bio-mimicked Binary Bees Algorithm (BBA) is introduced to solve this multiobjective multiconstraint combinatorialoptimisation problem, in which constraint handling technique (Multiobjective Transformation, MOT), multiobjectiveevaluation method (nondominance selection), global search strategy (stochastic search in the variable space), local searchstrategy (Hamming neighbourhood exploitation), and post-processing means (feasibility selection) are the main issues.TheBBA is then demonstrated with a case study, presenting the execution process of the algorithm, and also explaining the change ofelite number in evolutionary process.Its optimisation result provides a group of feasible nondominated two-level distributionschemes.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 81071219)
文摘A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components.
基金supported by Natural Science Foundation of Guangdong Provincial of China (No.7005833)
文摘The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs, i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail. Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.
基金funded by Deanship of Scientific Research,King Saud University,through the Vice Deanship of Scientific Research.
文摘Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019(COVID-19)pandemic.The used model is the most appropriate among the three most common location models utilized to solve healthcare problems(the set covering model,the maximal covering model,and the P-median model).The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints.The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction.The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt.In this case study,a discrete binary gaining–sharing knowledge-based optimization(DBGSK)algorithm is proposed.The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life.The DBGSK algorithm mainly depends on two junior and senior binary stages.These two stages enable DBGSK to explore and exploit the search space efficiently and effectively,and thus it can solve problems in binary space.
基金National High Technology Research and Development Program of China(No.2007AA04Z171)
文摘Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained.
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>
文摘A novel pitch determination algorithm with binary lateral inhibition network (BLIN) is proposed in this paper. A thread like spectrum, which is composed of the fundamental frequency and its harmonic components, is acquired by applying a BLIN to the short time spectrum of the speech signal. Then the pitch is determined by the average interval of harmonics. The algorithm is evaluated on COSDIC speech database. For comparison, the same results obtained from the same speech sample with the cepstrum and autocorrelation based pitch determination algorithms are also presented. The results show that the new algorithm is superior to the cepstrum and autocorrelation based pitch determination algorithms.
文摘This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.
文摘In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension.
基金This work is supported by the National Natural Science Foundation of China under Grant 61772179the Hunan Provincial Natural Science Foundation of China under Grant 2019JJ40005+3 种基金the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020the Double First-Class University Project of Hunan Province under Grant Xiangjiaotong[2018]469the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University under Grant IIPA19K02the Science Foundation of Hengyang Normal University under Grant 19QD13.
文摘Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.
基金This work is supported by The National Science Fund for Distinguished Young Scholars (60725105) National Basic Research Program of China (973 Program) (2009CB320404)+5 种基金 Program for Changjiang Scholars and Innovative Research Team in University (IRT0852) The National Natural Science Foundation of China (60972048, 61072068) The Special Fund of State Key Laboratory (ISN01080301) The Major program of National Science and Technology (2009ZX03007- 004) Supported by the 111 Project (B08038) The Key Project of Chinese Ministry of Education (107103).
文摘Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.
文摘The modeling of dynamical systems from a time series implemented by our DSA program introduces binary trees of height D with all leaves on the same level, and the related subtrees of height L 〈 D. These are called e-trees and e-subtrees. The recursive and nonrecursive versions of the traversal algorithms for the trees with dynamically created nodes are discussed. The original nonrecursive algorithms that return the pointer to the next node in preorder, inorder and postorder traversals are presented. The space-time complexity analysis shows and the execution time measurements confirm that for these O(2D) algorithms, the recursive versions have approximately 10-25% better time constants. Still, the use of nonrecursive algorithms may be more appropriate in several occasions.
文摘Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model.
文摘Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence.
文摘The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a major issue in the city,municipalities in the aspects of the environment,and logistics.An efficient supply chain with edge computing technology is used in managing medical waste.The supply chain operations include processing of waste collec-tion,transportation,and disposal of waste.Many research works have been applied to improve the management of wastage.The main issues in the existing techniques are ineffective and expensive and centralized edge computing which leads to failure in providing security,trustworthiness,and transparency.To over-come these issues,in this paper we implement an efficient Naive Bayes classifier algorithm and Q-Learning algorithm in decentralized edge computing technology with a binary bat optimization algorithm(NBQ-BBOA).This proposed work is used to track,detect,and manage medical waste.To minimize the transferring cost of medical wastage from various nodes,the Q-Learning algorithm is used.The accuracy obtained for the Naïve Bayes algorithm is 88%,the Q-Learning algo-rithm is 82%and NBQ-BBOA is 98%.The error rate of Root Mean Square Error(RMSE)and Mean Error(MAE)for the proposed work NBQ-BBOA are 0.012 and 0.045.
文摘With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.